首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the oxidation of 2-methyl cyclohexanone and cycloheptanone with Fe(CN)6 3− catalyzed by RhCl3 in alkaline medium was investigated at four temperatures. The rate follows direct proportionality with respect to lower concentrations of hexacyanoferrate(III) ion, but tends to become zero order at higher concentrations of the oxidant, while the reaction shows first-order kinetics with respect to hydroxide ion and cyclic ketone concentrations. The rate shows a peculiar nature with respect to RhCl3 concentrations in that it increases with increase in catalyst at low catalyst concentrations but after reaching a maximum, further increase in concentration retards the rate. An increase in the ionic strength of the medium increases the rate, while increase in the Fe(CN)6 4− concentration decreases the rate.  相似文献   

2.
Under kinetically controlled conditions, phenanthrene is converted to 9-hydroxyphenanthrene by acid hexacyanoferrate(III) in 90% aqueous acetic acid. The value of –4.0 indicates that the reaction proceeds via the formation of a cation radical intermediate.
(III) 9- 90%- . =–4,00, -.


15*  相似文献   

3.
Prasad S  Nigam PC 《Talanta》1991,38(6):627-630
A kinetic method is proposed for the determination of ruthenium(III) by means of its catalytic effect on the oxidation of benzylamine by hexacyanoferrate(III) in alkaline medium. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance of hexacyanoferrate(III) at 420 nm. Under the optimum experimental conditions ruthenium(III) can be determined in the range 10-121 ng/ml with an average error of 1.7% and maximum relative standard deviation of 1.3%. The influence of many potential interferents has been examined and the method has been tested for determination of ruthenium(III) in synthetic mixtures. The method is convenient, reliable and rapid.  相似文献   

4.
5.
Yang XF  Li H 《Talanta》2004,64(2):478-483
A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction between DHZS and hexacyanoferrate(III) in alkaline solution to give weak CL signal, which is dramatically enhanced by eosin Y. The CL emission allows quantitation of DHZS concentration in the range 0.02-2.8 μg ml−1 with a detection limit (3σ) of 0.012 μg ml−1. The experimental conditions for the CL reaction are optimized and the possible reaction mechanism is discussed. The method has been applied to the determination of DHZS in pharmaceutical preparations and compared well with the high performance liquid chromatography (HPLC) method.  相似文献   

6.
Rukmini N  Kavitha VS  Rao KR 《Talanta》1979,26(7):579-580
The determination of antimony(III) with potassium hexacyanoferrate(III) in 5M hydrochloric acid medium and in the presence of 40% v/v acetic acid is described. Ferroin is used as the indicator. Antimony has been determined in tartar emetic, solder and pig lead. Arsenic(III) does not interfere.  相似文献   

7.
It is established that the oxidation of potassium ferricyanide at pH 7–11 proceeds as a pseudo-second-order reaction with rate constants of 2.93, 4.19, 6.16, 8.66, and 9.22 L/(mol min) at 313, 323, 333, 343, and 353 K, respectively. The activation energy of the reaction is found to be 27.82 kJ/mol. The second order of the reaction, as along with the non-dependence of the rate constant on the liquid-phase volume: solidphase weight ratio, and on the rotation speed of the mixer, allow us to assume that the reaction proceeds in the kinetic region with a transition to the diffusion-kinetic mode at 353 K.  相似文献   

8.
The oxidation of halotoluenes by hexacyanoferrate(III) in aqueous acetic acid containing perchloric acid (0.5M) at 50°C gave the corresponding aldehyde as the major product, and a small amount of polymeric material. The order with respect to each of the reactants—substrate, oxidant, and acid—was found to be unity. Increasing proportions of acetic acid increased the rate of the reaction. The reaction was influenced by changes in temperature, and the activation parameters have been evaluated. The Hammett plot yielded a ρ+ value of ?1.8. A kinetic isotope effect kH/kD = 6.0 has been observed. The pathway for the conversion of the halotoluenes to the products has been mechanistically visualized as proceeding through the benzylic radical intermediate, formed in the rate-determining step of the reaction. The radical undergoes rapid conversion to the products.  相似文献   

9.
The kinetics of ruthenium(III) catalyzed oxidation of formaldehyde and acetaldehyde by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The rate of oxidation of formaldehyde is directly proportional to [Fe(CN) 3– 6 ] while that of acetaldehyde is proportional tok[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]}, wherek, k andk are rate constants. The order of reaction in acetylaldehyde is unity while that in formaldehyde falls from 1 to 0. The rate of reaction is proportional to [Ru(III)] T in each case. A suitable mechanism is proposed and discussed.
Die Kinetik der Ru(III)-katalysierten Oxidation von Formaldehyd und Acetaldehyd mittels alkalischem Hexacyanoferrat(III)
Zusammenfassung Die Untersuchung der Kinetik erfolgte spektrophotometrisch. Die Geschwindigkeitskonstante der Oxidation von Formaldehyd ist direkt proportional zu [Fe(CN) 3– 6 ], währenddessen die entsprechende Konstante für Acetaldehyd proportional zuk[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]} ist, wobeik,k undk Geschwindigkeitskonstanten sind. Die Reaktionsordnung für Acetaldehyd ist eine erste, die für Formaldehyd fällt von erster bis zu nullter Ordnung. Die Geschwindigkeitskonstante ist in jedem Fall proportional zu [Ru(III)] T . Es wird ein passender Mechanismus vorgeschlagen.
  相似文献   

10.
Summary The kinetics of the ruthenium(III)-catalysed oxidation of aminoalcoholsviz. 2-aminoethanol and 3-aminopropanol by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The reactions are rapid initially, then follow a second order rate dependence with respect to each of the catalyst and the oxidant. The second order rate dependence with respect to ruthenium(III) was observed for the first time. The order in [Aminoalcohol] and [OH] is unity in each case. A suitable mechanism, consistent with the observed kinetic data is postulated.  相似文献   

11.
The reaction between quinol and alkaline hexacyanoferrate(III) at constant ionic strength gives p-benzoquinone. The rate of the reaction was first order in the concentrations of substrate, oxidant and alkali. The slow step of the reaction involves the formation of the p-benzosemiquinone radical, which was detected by esr spectroscopy as a five-line spectrum with peak intensity ratios of 14641.
(III) -. , . - , , 14641.
  相似文献   

12.
13.
14.
A simple and fast kinetic method is based on the oxidation of 4-OH coumarone using KMnO4 and the determination of ultramicroamounts of Au(III) by its catalytic effect on this reaction. The sensitivity of the method is 25 ng/mL. The relative error ranges between 9.20–3.90% for the concentration interval 5 × 10−8–2 × 10−7 g/mL. The selectivity of the method is very good, and the effect of foreign ions is investigated. The proposed approach has been applied to the determination of traces of Au(III) in copper ore. The text was submitted by the authors in English.  相似文献   

15.
Alkaline hexacyanoferrate(III) oxidation of freshly prepared solutions of CrIII (pH>12) at 27°C follows the rate law, Equation 1:
  相似文献   

16.
The kinetics of oxidation of propane-1,3-diol by alkaline hexacyanoferrate (III) catalyzed by ruthenium trichloride has been studied spectrophotometrically. A reaction mechanism involving the formation of an intermediate complex between the substrate and the catalyst is proposed. In the rate-determining step this complex is attacked by hexacyanoferate(III) forming a free radical which is further oxidized.  相似文献   

17.
A novel chemiluminescence (CL) flow-through sensor for the determination of pyrogallol has been developed. The method is based on the reaction between pyrogallol and potassium hexacyanoferrate(III) in sodium hydroxide solution. Potassium hexacyanoferrate(III) involved in the CL reaction was electrostatically immobilized on anion-exchange resin packed in a column. Pyrogallol was sensed by the CL reaction between pyrogallol and potassium hexacyanoferrate(III) which was eluted from the ion-exchange column through sodium phosphate injection. The CL emission allows quantitation of pyrogallol concentration in the range 0.01-3.8 microg/mL with a detection limit (3 sigma) of 0.003 microg/mL and a sample throughput of 118 h(-1). The relative standard deviation (n=7) was 2.2% for 0.2 microg/mL of pyrogallol. The influence of foreign compounds was tested.  相似文献   

18.
Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in alkaline medium is assumed to occurvia substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-limiting stage and yield the products with regeneration of catalyst in the subsequent fast step. The reaction exhibits fractional order in hexacyanoferrate(II) and first-order unity each in oxidant and catalyst. The reaction constants involved in the mechanism are derived.  相似文献   

19.
The oxidation of N,N-dimethylaniline (DMA) by hexacyanoferrate (III) (Fe (CN)6 3-) has been studied in aqueous and micellar solutions of N,N-dimethyl- dodecylamine N-oxide (DDAO). The rate enhancement of the reaction in the presence of micelles has been explained with the pseudo- phase model of the kinetics.The dependence of the reaction rate on the nature of the salt cation has also been discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The kinetics of oxidation of AsIIIby Fe(CN)6 3– has been studied spectrophotometrically in 60% AcOH–H2O containing 4.0moldm–3HCl. The oxidation is made possible by the difference in redox potentials. The reaction is first order each in [Fe(CN)6 3–] and [AsIII]. Amongst the initially added products, Fe(CN)6 4– retards the reaction and AsVdoes not. Increasing the acid concentration at constant chloride concentration accelerates the reaction. At constant acidity increasing chloride concentration increases the reaction rate, which reaches a maximum and then decreases. H2Fe(CN)6 , is the active species of Fe(CN)6 3–, while AsCl5 2– in an ascending portion and AsCl2 + in a descending portion are considered to be the active species of AsIII. A suitable reaction mechanism is proposed and the reaction constants of the different steps involved have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号