首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
王颖  伍歆 《中国物理 B》2012,21(5):50504-050504
The regular and chaotic dynamics of test particles in a superposed field between a pseudo-Newtonian Kerr black hole and quadrupolar halos is detailed.In particular,the dependence of dynamics on the quadrupolar parameter of the halos and the spin angular momentum of the rotating black hole is studied.It is found that the small quadrupolar moment,in contrast with the spin angular momentum,does not have a great effect on the stability and radii of the innermost stable circular orbits of these test particles.In addition,chaos mainly occurs for small absolute values of the rotating parameters,and does not exist for the maximum counter-rotating case under some certain initial conditions and parameters.This means that the rotating parameters of the black hole weaken the chaotic properties.It is also found that the counter-rotating system is more unstable than the co-rotating one.Furthermore,chaos is absent for small absolute values of the quadrupoles,and the onset of chaos is easier for the prolate halos than for the oblate ones.  相似文献   

2.
冉玲苓  郭忠义  曲士良 《中国物理 B》2012,21(10):104206-104206
The rotational motions of the optically trapped microscopic particles by the vortex femtosecond laser beam are investigated in this paper.Black particles can be trapped and rotated by a vortex femtosecond laser beam very effectively because the vortex beam carries orbital angular momentum due to the helical wave-front structure in assoication with the central phase singularity.Trapped black particles rotate in the vortex beam due to the absorption of the angular momentum transferred from the vortex beam.The rotating directions of the trapped particles can be modulated by reversing the topological charge of the optical vortex in the vortex femtosecond beam.And the rotating speeds of the trapped microscopic particles greatly depend on the topological charges of the vortex tweezer and the used pulse energies.  相似文献   

3.
Novel Rotating Hairy Black Hole in (2 + 1) Dimensions   总被引:1,自引:1,他引:0  
We present some novel rotating hairy black hole metric in (2 + 1) dimensions, which is an exact solution to the field equations of the Einstein-scalar-AdS theory with a non-minimal coupling. The scalar potential is determined by the metric ansatz and consistency of the field equations and cannot be prescribed arbitrarily. In the simplified, critical ease, the scalar potential contains two independent constant parameters, which are respectively related to the mass and angular momentum of the black hole in a particular way. As long as the angular momentum does not vanish, the metric can have zero, one or two horizons. The case with no horizon is physically uninteresting because of the curvature singularity lying at the origin. We identify the necessary conditions for at least one horizon to be present in the solution, which imposes some bound on the mass-angular momentum ratio. For some particular choice of pararneters our solution degenerates into some previously known black hole solutions.  相似文献   

4.
We consider both gauged and ungauged minimal supergravities in five dimensions and analyse the charged rotating solutions with two equal angular momenta J. When the electric charge Q~J~(2/3) with some specific coefficient, we find new extremal black objects emerge that are asymptotic to either Minkowski or global Ad S spacetimes and can be best described as degenerate black rings. Their near-horizon geometry is locally AdS_3×S~2, where the periodic U(1) fibre coordinate in S_3 untwists and collapses to be the degenerate part of the AdS_3 horizon. It turns out that there are two branches of extremal rotating black holes, starting as the extremal RN black holes of the same mass, but opposite charges. With the increasing of the angular momentum, they will join to become the same degenerate black ring, where the Gibbs free energies however are not continuous at the joining. For the same Q(J) relation, we find that there is in addition a rotating soliton whose mass is smaller than that of the degenerate black ring.  相似文献   

5.
We apply the energy momentum and angular momentum tensor to a tetrad field,with two unknown functions of radial coordinate,in the framework of a teleparallel equivalent of general relativity(TEGR).The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-Nordstrm black hole.We also calculate the spatial momentum and angular momentum.  相似文献   

6.
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.  相似文献   

7.
The cycle of black hole (BH) spin proposed by Li and Paczynski (henceforth CYCLP) is compared with a more naturad model (henceforth CYC03), in which energy and angular momentum are transferred from a rotating BH to a region of some widths by the closed magnetic field fines. It turns out that the efficiency of converting theaccreted mass into the radiation energy in the CYC03 is less than that estimated in the CYCLP, while the BH mass and entropy in the CYC03 are greater than those in the CYCLP. It is shown that the features of the CYC03 are insensitive to the power-law index indicating the variation of the magnetic field in the disc.  相似文献   

8.
Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular momentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or- bital angular momentum measurement probabilities of the transmitted digit are presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect o[ turbulence defocus can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probability decreases.  相似文献   

9.
任军  贾孟文  袁常青 《中国物理 B》2009,18(12):5575-5582
The mass neutrino interference phases along the null trajectory and the geodesic line in Kerr space--time are studied on the plane θ=π/2. Because of the rotation object in Kerr space--time, a particle travelling along the radial geodesic must have a dragging effect produced by the angular momentum of the central object. We give the correction of the phase due to the rotation of the space--time. We find that the type-I interference phase along the geodesic remains the double of that along the null on the condition that the rotating quantity parameter a2 is preserved and the higher order terms are negligible (e.g. a4). In addition, we calculate the proper oscillation length in Kerr space--time. All of our results can return to those in Schwarzschild space--time as the rotating parameter a approaches zero.  相似文献   

10.
梁文峰  吴明  刘慧  陈相松 《中国物理快报》2008,25(12):4227-4229
We adopt a gauge-invariant definition to calculate the spin and orbital angular momenta of a so-called Ith order Laguerre-Gaussian laser. The results reveal that photons on the axis of the beam may carry an orbital angular momentum of (l - 1)h besides lh per photon. For the spin, we obtain a more reasonable expression proportional to the beam intensity instead of the gradient of the intensity as previously derived. We also discuss how to experimentally discriminate the angular momentum expressions given here and those commonly accepted in the literature.  相似文献   

11.
邹德成  杨战营  岳瑞宏  于添翼 《中国物理 B》2011,20(10):100403-100403
In this paper, we study a new metric for slowly rotating charged Gauss-Bonnet black holes in higher-dimensional anti-de Sitter space. Taking the angular momentum parameter a up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action.  相似文献   

12.
In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava–Lifshitz black hole. For the case of a slowly rotating KS solution of Horava–Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava–Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit.  相似文献   

13.
We investigate slowly rotating black holes in the Ho?ava–Lifshitz (HL) gravity. For Λ W =0 and λ=1, we find a slowly rotating black hole of the Kehagias–Sfetsos solution in asymptotically flat spacetimes. We discuss their thermodynamic properties by computing mass, temperature, angular momentum, and angular velocity on the horizon.  相似文献   

14.
Using Damour-Ruffini method, Hawking radiation of rotating black strings is studied. Under the condition that the total energy, total angular momentum and total charge are conservative, the transition probability from initial state (energy M+ω, charge Q+e and angular momentum J+m) to final state (energy M, charge Q and angular momentum J) for black strings is derived considering the reaction of radiation particles to spacetime. That is, the probability that black strings radiate particles with energy ω, charge e and angular momentum m is obtained. The real spectrum is not a strictly pure thermal spectrum. Our result is consistent with Parikh and Wilczek’s result. It satisfies the unitary principle of quantum mechanics. However, in our result there are not only the term that denotes effect of energy and charge of radiation particles but also the term that denotes effect of radiation particles angular momentum on rotating black strings angular momentum. We provide a new way for investigating radiation of black strings.  相似文献   

15.
Bing Tang 《中国物理C(英文版)》2021,45(5):055101-055101-10
Based on the Melnikov method, we investigate chaotic behaviors in the extended thermodynamic phase space for a slowly rotating Kerr-AdS black hole under temporal and spatial perturbations. Our results show that the temporal perturbation coming from a thermal quench of the spinodal region in the phase diagram may cause temporal chaos only when the perturbation amplitude is above a critical value, which involves the angular momentum J. Under the spatial perturbation, however, it is found that spatial chaos always occurs, independent of the perturbation amplitude.  相似文献   

16.
Five-dimensional Einstein-Maxwell-Chern-Simons theory with a Chern-Simons coefficient lambda = 1 has supersymmetric black holes with a vanishing horizon angular velocity but finite angular momentum. Here supersymmetry is associated with a borderline between stability and instability, since for lambda > 1 a rotational instability arises, where counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. For lambda > 2 black holes are no longer uniquely characterized by their global charges, and rotating black holes with vanishing angular momentum appear.  相似文献   

17.
In this work, the solution of the Einstein equations for a slowly rotating black hole with Born-Infeld charge is obtained. Geometrical properties and horizons of this solution are analyzed. The conditions when the ADM mass (as in the nonlinear static cases) and the ADM angular momentum of the system have been modified by the non linear electromagnetic field of the black hole, are considered.  相似文献   

18.
In this paper, we present the metric for the n-dimensional charged slowly rotating dilaton black hole with N = [(n −1)/2] independent rotation parameters, associated with N orthogonal planes of rotation in the background of asymptotically flat and asymptotically (anti)-de Sitter spacetime. The mass, angular momentum and the gyromagnetic ratio of such a black hole are determined for the arbitrary values of the dilaton coupling constant. We find that the gyromagnetic ratio crucially depends on the dilaton coupling constant, α, and decreases with increasing α in any dimension.  相似文献   

19.
Based on a mathematical lemma related to the Vandermonde determinant and two theorems derived from the first law of black hole thermodynamics, we investigate the angular momentum independence of the entropy sum as well as the entropy product of general rotating Kaluza-Klein black holes in higher dimensions. We show that for both non-charged rotating Kaluza-Klein black holes and non-charged rotating Kaluza-Klein-AdS black holes, the angular momentum of the black holes will not be present in entropy sum relation in dimensions d≥4, while the independence of angular momentum of the entropy product holds provided that the black holes possess at least one zero rotation parameter a j = 0 in higher dimensions d≥5, which means that the cosmological constant does not affect the angular momentum-free property of entropy sum and entropy product under the circumstances that charge δ=0. For the reason that the entropy relations of charged rotating Kaluza-Klein black holes as well as the non-charged rotating Kaluza-Klein black holes in asymptotically flat spacetime act the same way, it is found that the charge has no effect in the angular momentum-independence of entropy sum and product in asymptotically flat spactime.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号