首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two least-squares Galerkin finite element schemes are formulated to solve parabolic integro-differential equations. The advantage of this method is that it is not subject to the LBB condition. The convergence analysis shows that the least-squares mixed element schemes yield the approximate solution with optimal accuracy in H(div;Ω)×H1(Ω) and (L2(Ω))2×L2(Ω), respectively.  相似文献   

2.
Two Crank–Nicolson least-squares Galerkin finite element schemes are formulated to solve parabolic integro-differential equations. The advantage of this method is that it is not subject to the LBB condition. The convergence analysis shows that the methods yield the approximate solutions with optimal accuracy in H(div; Ω) × H1(Ω) and (L2(Ω))2 × L2(Ω), respectively. Moreover, the two methods both get the approximate solutions with second-order accuracy in time increment.  相似文献   

3.
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2(H1) and L2(L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition knch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.  相似文献   

4.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

5.
We consider the nonlinear parabolic partial differential equations. We construct a discontinuous Galerkin approximation using a penalty term and obtain an optimal L(L2) error estimate.  相似文献   

6.
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l2(H1) and l(L2) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin–scheme with the implicit θ ‐schemes in time, which include backward Euler and Crank–Nicolson finite difference approximations. Our estimates are optimal with respect to the mesh size h. The theoretical results are confirmed by some numerical experiments. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
** Email: jingtang{at}lsec.cc.ac.cn*** Email: hermann{at}math.mun.ca In this paper we establish a posteriori error estimates forthe discontinuous Galerkin (DG) method applied to linear, semilinearand non-standard (non-linear) Volterra integro-differentialequations. We also present an analysis of the DG method withquadrature for the memory term. Numerical experiments basedon three integro-differential equations are used to illustratevarious aspects of the error analysis.  相似文献   

8.
In this article, we investigate interior penalty discontinuous Galerkin (IPDG) methods for solving a class of two‐dimensional nonlinear parabolic equations. For semi‐discrete IPDG schemes on a quasi‐uniform family of meshes, we obtain a priori bounds on solutions measured in the L2 norm and in the broken Sobolev norm. The fully discrete IPDG schemes considered are based on the approximation by forward Euler difference in time and broken Sobolev space. Under a restriction related to the mesh size and time step, an hp ‐version of an a priori l(L2) and l2(H1) error estimate is derived and numerical experiments are presented.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 288–311, 2012  相似文献   

9.
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.  相似文献   

10.
研究求解一种产生于径向渗流问题的推广的对流扩散方程的局部化间断Galerkin方法,对一般非线性情形证明了方法的L^2稳定性;对线性情形证明了,当方法取有限元空间为κ次多项式空间时,数值解逼近的L^∞(0,T;L^2)模的误差阶为κ。  相似文献   

11.
We study a second order hyperbolic initial‐boundary value partial differential equation (PDE) with memory that results in an integro‐differential equation with a convolution kernel. The kernel is assumed to be either smooth or no worse than weakly singular, that arise for example, in linear and fractional order viscoelasticity. Existence and uniqueness of the spatial local and global Galerkin approximation of the problem is proved by means of Picard's iteration. Then, spatial finite element approximation of the problem is formulated, and optimal order a priori estimates are proved by the energy method. The required regularity of the solution, for the optimal order of convergence, is the same as minimum regularity of the solution for second order hyperbolic PDEs. Spatial rate of convergence of the finite element approximation is illustrated by a numerical example. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 548–563, 2016  相似文献   

12.
Error estimates for Galerkin discretizations of parabolic integro-differential equations are presented under minimal regularity assumptions. The analysis is applicable in case that the full Galerkin matrix A associated to the integral operator is replaced by a compressed “sparse” matrix using wavelet basis techniques. In particular, a semi-discrete (in space) scheme and a fully-discrete scheme which is discontinuous in time but conforming in space are analyzed. AMS subject classification (2000)  65R20, 65M60  相似文献   

13.
A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0,T;L2) for concentration c,in L2(0,T;L2)for cxand L∞(0,T;L2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method,the nonlinearity,and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally,we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme.  相似文献   

14.
We consider the hp-version interior penalty discontinuous Galerkinfinite-element method (hp-DGFEM) for second-order linear reaction–diffusionequations. To the best of our knowledge, the sharpest knownerror bounds for the hp-DGFEM are due to Rivière et al.(1999,Comput. Geosci., 3, 337–360) and Houston et al.(2002,SIAM J. Numer. Anal., 99, 2133–2163). These are optimalwith respect to the meshsize h but suboptimal with respect tothe polynomial degree p by half an order of p. We present improvederror bounds in the energy norm, by introducing a new functionspace framework. More specifically, assuming that the solutionsbelong element-wise to an augmented Sobolev space, we deducefully hp-optimal error bounds.  相似文献   

15.
The local discontinuous Galerkin method has been developed recently by Cockburn and Shu for convection‐dominated convection‐diffusion equations. In this article, we consider versions of this method with interior penalties for the numerical solution of transport equations, and derive a priori error estimates. We consider two interior penalty methods, one that penalizes jumps in the solution across interelement boundaries, and another that also penalizes jumps in the diffusive flux across such boundaries. For the first penalty method, we demonstrate convergence of order k in the L(L2) norm when polynomials of minimal degree k are used, and for the second penalty method, we demonstrate convergence of order k+1/2. Through a parabolic lift argument, we show improved convergence of order k+1/2 (k+1) in the L2(L2) norm for the first penalty method with a penalty parameter of order one (h?1). © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 545–564, 2001  相似文献   

16.
17.
We study a discontinuous Galerkin finite element method (DGFEM) for the Stokes equations with a weak stabilization of the viscous term. We prove that, as the stabilization parameter γ tends to infinity, the solution converges at speed γ?1 to the solution of some stable and well‐known nonconforming finite element methods (NCFEM) for the Stokes equations. In addition, we show that an a posteriori error estimator for the DGFEM‐solution based on the reconstruction of a locally conservative H(div, Ω)‐tensor tends at the same speed to a classical a posteriori error estimator for the NCFEM‐solution. These results can be used to affirm the robustness of the DGFEM‐method and also underline the close relationship between the two approaches. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

18.
In this paper, a new discontinuous Galerkin method is developed for the parabolic equation with jump coefficients satisfying the continuous flow condition. Theoretical analysis shows that this method is $L^2$ stable. When the finite element space consists of interpolative polynomials of degrees $k$, the convergent rate of the semi-discrete discontinuous Galerkin scheme has an order of$\mathcal{O}(h^k)$. Numerical examples for both 1-dimensional and 2-dimensional problems demonstrate the validity of the new method.  相似文献   

19.
We introduce and analyze the local discontinuous Galerkin method for the Oseen equations of incompressible fluid flow. For a class of shape-regular meshes with hanging nodes, we derive optimal a priori estimates for the errors in the velocity and the pressure in - and negative-order norms. Numerical experiments are presented which verify these theoretical results and show that the method performs well for a wide range of Reynolds numbers.

  相似文献   


20.
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L2 and an H2 type norm for both semi‐discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号