首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Problems in nonlinear properties of carbon nanotubes with a strong interaction of electrons are considered if the electron mobility, the Coulomb repulsion of electrons at one site of a carbon nanotube, and variations in the distance between neighboring sites owing to acoustic oscillations are taken into account. The possible occurrence of nonlinear acoustic lattices in carbon nanotubes that are small in diameter is investigated.  相似文献   

2.
We perform molecular dynamics simulations to study shape changes of carbon fullerenes and nanotubes with increasing temperature. At moderate temperatures, these systems gain structural and vibrational entropy by exploring the configurational space at little energy cost. We find that the soft phonon modes, which couple most strongly to the shape, maintain the surface area of these hollow nanostructures. In nanotubes, the gain in entropy translates into a longitudinal contraction, which reaches a maximum at T approximately 800 K. Only at much higher temperatures do the anharmonicities in the vibration modes cause an overall expansion.  相似文献   

3.
C(59)N magnetic fullerenes were formed inside single-wall carbon nanotubes by vacuum annealing functionalized C(59)N molecules encapsulated inside the tubes. A hindered, anisotropic rotation of C(59)N was deduced from the temperature dependence of the electron spin resonance spectra near room temperature. Shortening of the spin-lattice relaxation time T(1) of C(59)N indicates a reversible charge transfer toward the host nanotubes above approximately 350 K. Bound C(59)N-C(60) heterodimers are formed at lower temperatures when C(60) is coencapsulated with the functionalized C(59)N. In the 10-300 K range, T(1) of the heterodimer shows a relaxation dominated by the conduction electrons on the nanotubes.  相似文献   

4.
碳纳米管中封装富勒烯的机理   总被引:2,自引:0,他引:2       下载免费PDF全文
王锋  曾祥华  徐秀莲 《物理学报》2002,51(8):1778-1783
利用经典分子动力学模型,发现C60进入单壁碳纳米管(SWNTs)形成(C60)n@SWNTs的吸入和俘获机理.揭示了吸入和俘获势垒只局域于SWNTs的管口区,而在SWNTs的管内区,C60沿管轴方向的运动几乎不受力.最后,系统地计算了吸入和俘获势垒随SWNTs管径的变化,发现只有当SWNTs的管径大于阈值1238nm时才能吸入C 关键词: 富勒烯相关材料 碳纳米管 类虹吸作用  相似文献   

5.
Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices.  相似文献   

6.
We have assembled molecular arrays of C60 inside double-walled carbon nanotubes (DWNTs) with internal diameters of 11-26 A and directly observed the existence of different crystalline phases of C60 previously predicted theoretically. The structure of the encapsulated C60 crystal is defined by the internal diameter of the DWNT, as the molecules adjust their packing arrangement in order to maximize van der Waals interactions. We have also shown that fullerenes in C(60)@DWNT interact with the outer layer of DWNTs, as demonstrated by the efficient filling of DWNTs with internal diameters of less than 12 A.  相似文献   

7.
Capacitances of molecules, fullerenes and carbon nanotubes under the condition of no electron-tunneling are calculated by the partitioned real-space density functional method that has been recently developed. We found that a quantum capacitance of a spherical jellium bielectrode decreases and approaches the classical value as the electron density increases. The capacitances of fullerenes and carbon nanotubes do not depend on the detailed atomic geometry but on the overall shapes. The values of the capacitances of these nanostructures are found to be a few 10-20 F and are compatible with the experimental ones determined by the scanning tunneling microscopy studies.  相似文献   

8.
9.
The propagation and scattering of two-dimensional unitary electromagnetic waves on metallic discontinuity in a block of carbon nanotubes is considered. The electromagnetic field was considered on the basis of Maxwell equations, and the electron system of carbon nanotubes was based on Boltzmann kinetic equations in an approximation of the relaxation time.  相似文献   

10.
11.
The possibility of stable non-carbon fullerenes is discussed for the case of phosphorus fullerene-like cage structures. On the basis of Density Functional Tight Binding calculations it is shown that many such cages correspond to metastable structures, but with increasing nuclearity become less stable with respect to separate molecular P4 units. Stability rules, known for carbon fullerenes, such as the “isolated pentagon rule”, do not reflect the different electronic and steric requirements of the phosphorus atom. The computational results tend to rule out phosphorus fullerenes.  相似文献   

12.
Zitterbewegung (ZB, trembling motion) of electrons in semiconductor carbon nanotubes is described taking into account dephasing processes. The density matrix formalism is used for the theory. Differences between decay of ZB oscillations due to electron localization and that due to dephasing are discussed.  相似文献   

13.
Encapsulation of fullerene into nanotubes based on a C2N sheet, known as nitrogenated holey graphene, was investigated using density functional theory. The structural and electronic properties of these carbon hybrid materials, consisting of nitrogenated holey nanotubes and a small C20 fullerene, were studied. The formation energies showed that encapsulation of the fullerene into the nitrogenated holey nanotube is an exothermic process. To characterise the electronic properties, the electronic band structure and density of states of armchair and zigzag nitrogenated holey nanotubes were calculated. Filling these nanotubes with the C20 fullerene resulted in a p-type semiconducting character. The energy band gap of the nitrogenated holey nanotubes decreased with fullerene encapsulation. The results are indicative of the possibility of band gap engineering by encapsulation of small fullerenes into nitrogenated holey nanotubes.  相似文献   

14.
A methodology to evaluate the kinetic stability of carbon nanostructures is presented based on the assumption of the independent and random nature of thermal vibrations. The kinetic stability is directly correlated to the cleavage probability for the weakest bond of a given nanostructure. The application of the presented method to fullerenes and carbon nanotubes yields clear correlation to their experimentally observed relative isomer abundances. The general and simple formulation of the method ensures its applicability to other nanostructures for which formation is controlled by kinetic factors.  相似文献   

15.
The theoretical analysis of propagation of guided waves in the multi-walled carbon nanotubes is presented within the framework of the classical electrodynamics. Electronic excitations of each wall of the system are modeled as an infinitesimally thin cylindrical layer of the π-electrons, whose dynamics are described by means of the fluid theory. General expressions of dispersion relations are obtained for the electromagnetic wave with the transverse magnetic and transverse electric modes, respectively, by solving Maxwell and fluid equations with appropriate boundary conditions.  相似文献   

16.
17.
Single wall carbon nanotubes filled with C60 were analyzed using resonance Raman scattering and electron energy loss spectroscopy. In order to obtain concentrations of the fullerene molecules inside the tubes, the scattering intensity from the fullerenes relative to that from the tubes was used. Since the scattering intensity from the tubes is subject to strong fluctuations, the determination of the concentrations is shown to require averaging of results from different lasers and from all observable Raman lines. The fluctuations are shown to be intrinsic and a consequence of photoselective resonance scattering. Calibration of absolute concentrations can be obtained from electron energy loss spectroscopy performed on the same samples. Samples with three different diameters were analyzed and good agreement between the fullerene concentrations measured by the two methods was obtained. Received: 20 September 2002 / Accepted: 4 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +43-1/4277-51375, E-mail: kuzman@ap.univie.ac.at  相似文献   

18.
Oscillations of a 2D electron plasma in a transverse magnetic field have been theoretically studied taking into account spin-orbit interaction. Four branches of spin-plasmon oscillations associated with different selection rules for spin and orbital quantum numbers have been shown to appear at a small plasmon momentum in a semiclassical limit (the Fermi energy is much higher than the Landau quantum). In the quantum case (the filling factor ν is about unity), the number of branches changes from three to six depending on ν value.  相似文献   

19.
Multi-particle flow through a cyclic array of K connected compartments with a preferential direction is known to be able to organize itself in the form of density waves [Kanellopoulos, Van der Meer, and Van der Weele, Phys. Rev. E 92, 022205 (2015)]. In this brief note we focus on the intriguing shape these waves take when K is even, in which case they travel through alternatingly dense and diluted compartments. We call them “merlon waves”, since the sequence of high and low densities is reminiscent of the merlons and crenels on the battlements of medieval castles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号