首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the dynamics of a two-dimensional system constituted by two masses subjected to elastic, gravitational and viscous forces and constrained by a moving frictional mono-lateral surface. The model exhibits a time-varying dynamics capable of reproducing the hopping phenomenon, an unwanted phenomenon observed in many applications such as the motion of a robotic arm on a surface or that of a wiper on a windscreen. The system dynamics, besides being affected by geometrical non-linearities, has a non-smooth nature due to the impact and friction laws involved in the model. The complexity of the resulting equations and of the transition conditions require the problem to be solved numerically. Various periodic motions are found and the effect of varying the system parameters, in particular the friction coefficient, is investigated. Finally, simulations are used to gain some insight the behavior of the windscreen wiper.  相似文献   

2.
Shear to longitudinal mode conversion via second harmonic generation is studied theoretically and computationally for plane waves in a two-dimensional, adhesive, hexagonally close-packed microscale granular medium. The model includes translational and rotational degrees of freedom, as well as normal and shear contact interactions. We consider fundamental frequency plane waves in all three linear modes, which have infinite spatial extent and travel in one of the high-symmetry crystal directions. The generated second harmonic waves are longitudinal for all cases. For the lower transverse–rotational mode, an analytical expression for the second harmonic amplitude, which is derived using a successive approximations approach, reveals the presence of particular resonant and antiresonant wave numbers, the latter of which is prohibited if rotations are not included in the model. By simulating a lattice with adhesive contact force laws, we study the effectiveness of the theoretical analysis for non-resonant, resonant, and antiresonant cases. This work is suitable for the analysis of microscale and statically compressed macroscale granular media, and should inspire future studies on nonlinear two- and three-dimensional granular systems in which interparticle shear coupling and particle rotations play a significant role.  相似文献   

3.
In order to build a unified modelling for granular media by means of Eulerian averaged equations, it is necessary to study two contributions in the effective Cauchy stress tensor: the first one concerns solid and fluid matter, including contact and collisions between grains; the second one focuses on the random movements of grains and fluid, similar to Reynolds stress for turbulent flows. It is shown that the point of view of piecewise continuous media already used for two phase flows allows one to derive a constitutive equation for the first contribution, under the form of a partial differential equation. Similarly as for the Reynolds stress in turbulent flows, this equation cannot be written only in terms of averaged quantities without adequate approximations. The structure of the closed equation is discussed with respect to irreversible thermodynamics, and in connection with some already existing models. It is emphasised that numerical simulations by the discrete elements method can be used in order to validate these approximations, through numerical experiments statistically considered. Finally an extension of this approach to the second contribution of the effective Cauchy stress tensor is briefly discussed, showing how the modelling of both contributions have to be coupled.   相似文献   

4.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

5.
An exact solution that describes the fields of displacements and stresses in an expanding spherical layer is constructed within the framework of the theory of small strains of a granular medium with rigid particles. For finite strains, the problem reduces to a nonlinear system of ordinary differential equations, which is solved by numerical methods. Similar solutions are found in the problem for a cylindrical layer. Based on these solutions, the effect of the dilatancy of the granular medium on the stress-strain state near expanding cavities is found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 190–196, May–June, 2009.  相似文献   

6.
We present a numerical study on the penetration of spherical projectiles into a granular bed in the presence of upward gas flows. Due to the presence of interstitial fluid, the force chains between particles in the granular bed are weakened significantly, and this distinguishes the penetration behavior from that in the absence of fluid. An interesting phenomenon, namely granular jet, is observed during the penetration, and the mechanism for its formation and growth is attributed to the merging of granular vortices generated by the interaction between the intruder and primary particles. Moreover, both the final penetration depth and the maximum diameter of the crater are found to follow a power-law dependence with the impact velocity, and the maximum height reached by the granular jet tends to increase linearly as the impact velocity increases, agreeing well with the experimental results reported in the literature.  相似文献   

7.
We use a two-dimensional model of polygonal particles to investigate granular ratcheting. Ratcheting is a long-term response of granular materials under cyclic loading, where the same amount of permanent deformation is accumulated after each cycle. We report on ratcheting for low frequencies and extremely small loading amplitudes. The evolution of the sub-network of sliding contacts allows us to understand the micromechanics of ratcheting. We show that the contact network evolves almost periodically under cyclic loading as the sub-network of the sliding contacts reaches different stages of anisotropy in each cycle. Sliding contacts lead to a monotonic accumulation of permanent deformation per cycle in each particle. The distribution of these deformations appears to be correlated in form of vortices inside the granular assembly.  相似文献   

8.
We use a two-dimensional model of polygonal particles to investigate granular ratcheting. Ratcheting is a long-term response of granular materials under cyclic loading, where the same amount of permanent deformation is accumulated after each cycle. We report on ratcheting for low frequencies and extremely small loading amplitudes. The evolution of the sub-network of sliding contacts allows us to understand the micromechanics of ratcheting. We show that the contact network evolves almost periodically under cyclic loading as the sub-network of the sliding contacts reaches different stages of anisotropy in each cycle. Sliding contacts lead to a monotonic accumulation of permanent deformation per cycle in each particle. The distribution of these deformations appears to be correlated in form of vortices inside the granular assembly.  相似文献   

9.
10.
This paper investigates the definition of the stress tensor within a granular assembly, when inertial effects are likely to occur. It is shown that the stress tensor can be expressed as a sum of two terms. A first term corresponds to the standard definition of the stress, according to the Love–Weber formula; this term is related to the contact forces existing within adjoining particles. A second term accounts for dynamic effects related to rotation velocities and accelerations of the particles. These results are checked from discrete numerical simulations in order to examine in which context the contribution of inertial effects should not be omitted. With this aim, the simulation of a granular specimen collapse and then a silo discharge is considered.  相似文献   

11.
In a binary granular system composed of two types of particles with different granule sizes and the same density, particle sorting occurs easily during the flow process. The segregation pattern structure is mainly affected by the granular velocity and granular concentration in the flow layer. This paper reports on the experimental velocity and concentration measurement results for spherical particles in a quasi-two-dimensional rotating drum. The relationship between the granular velocity along the depth direction of the flow layer and granular concentration was established to characterize structures with different degrees of segregation. The corresponding relationships between the granular velocity and concentration and the segregation pattern were further analyzed to improve the theoretical models of segregation (convection–diffusion model and continuous flow model) and provide a reference for granular segregation control in the production process.  相似文献   

12.
Robot locomotion on rigid terrain or in fluids has been studied to a large extent. The locomotion dynamics on or within soft substrates such as granular material (GM) has not been fully investigated. This paper proposes a hybrid force model to simulate and evaluate the locomotion performance of a legged terrestrial robot in GM. The model incorporates an improved Resistive Force Theory (RFT) model and a failure-based model. The improved RFT model integrates the force components of individual leg elements over the curved leg portion submerged in GM at any moment during a full period of leg rotation. The failure-based model is applied in a bar drag model to yield the normal and the lateral forces of the individual RFT elements as functions of the locomotion depth and speed. The hybrid model is verified by the coincidence between the theoretical predictions and the experimental results. The hybrid model is used to analyze the effects of angular velocity and leg shape with high precision and can guide the design of the legs with any profiles. Our study reveals that the interactions between locomotor and substrate are determined by the locomotor structural characteristics, the nature of the substrate, and the control strategy.  相似文献   

13.
In this paper, we study the fully developed gravity-driven flow of granular materials between two inclined plates. We assume that the granular materials can be represented by a modified form of the second grade fluid where the viscosity depends on the shear rate and volume fraction and the normal stress coefficients depend on the volume fraction. We also propose a new isotropic (spherical) part of the stress tensor which can be related to the compactness of the (rigid) particles. This new term ensures that the rigid solid particles cannot be compacted beyond a point, namely when the volume fraction has reached the critical/maximum packing value. The numerical results indicate that the newly proposed stress tensor has obvious and physically meaningful effects on both the velocity and the volume fraction fields.  相似文献   

14.
A mathematical model of a granular medium saturated with a viscous homogeneous fluid is constructed. The steady-state one-dimensional oscillations of cylindrical granules and an incompressible fluid under the action of a plane sonic wave whose length is significantly greater than the cell dimensions are investigated. The steady-state flow of the medium across the cell cross-section and the mean fluid velocity (Darcy’s law) are determined by means of passages to the limits with respect to the frequency and granule mass. The expressions obtained for the soil permeability coefficient under the action of a gravitational hydraulic head are compared with the representations of other authors.  相似文献   

15.
Smart material systems and structures have remarkable properties responsible for their application in different fields of human knowledge. Shape memory alloys, piezoelectric ceramics, magnetorheological fluids, and magnetostritive materials constitute the most important materials that belong to the smart materials category. Shape memory alloys (SMAs) are metallic alloys usually employed when large forces and displacements are required. Applications in aerospace structures, rotordynamics and several bioengineering devices are investigated nowadays. In terms of applied dynamics, SMAs are being used in order to exploit adaptive dissipation associated with hysteresis loop and the mechanical property changes due to phase transformations. This paper presents a general overview of nonlinear dynamics and chaos of smart material systems built with SMAs. Oscillators, vibration absorbers, impact systems and structural systems are of concern. Results show several possibilities where SMAs can be employed for dynamical applications.  相似文献   

16.
Continuum mechanics relies on the fundamental notion of a mesoscopic volume “element” in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests that a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional discrete-element method (DEM) simulations of different granular flows and show that an approximate “granular element” defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships between average variables.  相似文献   

17.
In this contribution, typical friction driven structures are summarized and presented considering the mechanical structures and operation principles of different types of piezoelectric motors. A two degree-of-freedom dynamic model with one unilateral frictional contact is built for one of the friction driven structures. Different contact regimes and the transitions between them are identified and analyzed. Numerical simulations are conducted to find out different operation modes of the system concerning the sequence of contact regimes in one steady state period. The influences of parameters on the operation modes and corresponding steady state characteristics are also explored. Some advice are then given in terms of the design of friction driven structures and piezoelectric motors.  相似文献   

18.
19.
The paper addresses the stability of solutions of ordinary differential equations of particular type for different statements and assumptions. The equations are interpreted as models of motion of a rigid body under the action of the ambient medium __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 49–67, October 2007.  相似文献   

20.
Macro-scale deformation of granular solids comprising large number of grains (>106) are most efficiently described within the framework of continuum mechanics. It is notable, however that the micro-scale deformations in these materials are concentrated at the grain-boundaries or grain-contacts. Thus, the deformation energies in these systems must be modeled by considering the deformations concentrated in the neighborhood of the grain-boundaries or grain-contacts. To address this issue, grain-interactions has been widely described in the Hertzian sense by considering the relative movement of points on either side of a grain boundary or contact treated as an imperfect interface. This communication introduces the relevant kinematic variables given in the terms of the grain displacements, spins and size that can be used to estimate the relative movement of a grain boundary or contact. The macro-scale kinematic variables useful for continuum modeling are then identified with the grain-scale kinematic variables. The deformation energy density of the granular solid can thus be expressed both in terms of the grain-scale as well as the macro-scale kinematic variables providing the necessary pathway for micro-macro identification which can lead to non-classical micromorphic continuum models that incorporate grain-scale representation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号