首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

2.
Crystals of Ba(2)Cu(PO(4))(2) have been grown in a low-temperature eutectic flux of 32% KCl and 68% CuCl (mp = 140 degrees C). The X-ray single-crystal structure analysis shows that this barium copper(II) phosphate crystallizes in a monoclinic lattice with a = 12.160(4) ?, b = 5.133(4) ?, c = 6.885(4) ?, beta = 105.42(4) degrees, and V = 414.3(4) ?(3); C2/m (No. 12); Z = 2. The structure has been refined by the least-squares method to a final solution with R = 0.020, R(w) = 0.026, and GOF = 1.05. The framework of the title compound consists of [Cu(PO(4))(2)](infinity) linear chains with Ba(2+) cations residing between these parallel chains. The chains are composed of an array of Cu(2+) cations that are doubly bridged by PO(4) anions. Each pair of bridging PO(4) tetrahedra are in a staggered configuration above and below the CuO(4) square plane, resulting in a linear chain with a long Cu---Cu separation distance, 5.13 ? ( identical withb). This quasi-one-dimensional framework is unusual among the Cu(2+)-based phosphates. Magnetic susceptibility data shows Curie-Weiss paramagnetic behavior in the range of ca. 190-300 K and a possible antiferro-to-ferromagnetic transition at approximately 8 K. In this paper, the synthesis, structure, and properties of the title compound are presented. A structural comparison to a closely related vanadyl (VO)(2+) phosphate, Ba(2)(VO)(PO(4))(2).H(2)O, as well as Na(2)CuP(2)O(7) will be discussed.  相似文献   

3.
Dissolution of a tetrafluoroborate or perchlorate salt of [M(OH(2))(6)](2+) (M = Co, Ni, Cu) in 1-ethyl-3-methylimidazolium tetraluforoborate ionic liquid ([emim]BF(4)) results in significant solvatochromism and increasing intensity of color. These observations arise from partial dehydration from the octahedral [M(OH(2))(6)](2+) and formation of the tetrahedral [M(OH(2))(4)](2+). This reaction was monitored by the intense absorption band due to the d-d transition in the UV-vis absorption spectrum. The EXAFS investigation clarified the coordination structures around M(2+) {[Co(OH(2))(4)](2+), R(Co-O) = 2.17 ?, N = 4.2; [Cu(OH(2))(4)](2+), R(Cu-O) = 2.09 ?, N = 3.8}. (1)H and (19)F NMR study suggested that both [emim](+) and BF(4)(-) are randomly arranged in the second-coordination sphere of [M(OH(2))(4)](2+).  相似文献   

4.
Four new copper(II) complexes of formula [Cu(2)(tppz)(dca)(3)(H(2)O)].dca.3H(2)O (1), [Cu(5)(tppz)(N(3))(10)](n)() (2), [[Cu(2)(tppz)(N(3))(2)][Cu(2)(N(3))(6)]](n)() (3), and [Cu(tppz)(N(3))(2)].0.33H(2)O (4) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine and dca = dicyanamide anion] have been synthesized and structurally characterized by X-ray diffraction methods. The structure of complex 1 is made up of dinuclear tppz-bridged [Cu(2)(tppz)(dca)(3)(H(2)O)](+) cations, uncoordinated dca anions, and crystallization water molecules. The copper-copper separation across bis-terdentate tppz is 6.5318(11) A. Complex 2 is a sheetlike polymer whose asymmetric unit contains five crystallographically independent copper(II) ions. These units are building blocks in double chains in which the central part consists of a zigzag string of copper atoms bridged by double end-on azido bridges, and the outer parts are formed by dinuclear tppz-bridged entities which are bound to the central part through single end-on azido bridges. The chains are furthermore connected through weak, double out-of-plane end-on azido bridges, yielding a sheet structure. The intrachain copper-copper separations in 2 are 6.5610(6) A across bis-terdentate tppz, 3.7174(5) and 3.8477(5) A across single end-on azido bridges, and from 3.0955(5) to 3.2047(7) A across double end-on azido bridges. The double dca bridge linking the chains into sheets yields a copper-copper separation of 3.5984(7) A. The structure of 3 consists of centrosymmetric [Cu(2)(tppz)(N(3))(2)](2+) and [Cu(2)(N(3))(6)](2)(-) units which are linked through axial Cu.N(azido) (single end-on and double end-to-end coordination modes) type interactions to afford a neutral two-dimensional network. The copper-copper separations within the cation and anion are is 6.5579(5) A (across the bis-terdentate tppz ligand) and 3.1034(6) A (across the double end-on azido bridges), whereas those between the units are 3.6652(4) A (through the single end-on azido group) and 5.3508(4) A (through the double end-to-end azido bridges). The structure of complex 4 is built of neutral [Cu(tppz)(N(3))(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper separation of 3.9031(15) A. The magnetic properties of 1-4 have been investigated in the temperature range 1.9-300 K. The magnetic behavior of complexes 1 and 4 is that of antiferromagnetically coupled copper(II) dimers with J = -43.7 (1) and -2.1 cm(-)(1) (4) (the Hamiltonian being H = -JS(A).S(B)). An overall ferromagnetic behavior is observed for complexes 2 and 3. Despite the structural complexity of 2, its magnetic properties correspond to those of magnetically isolated tppz-bridged dinuclear copper(II) units with an intermediate antiferromagnetic coupling (J = -37.5 cm(-)(1)) plus a ferromagnetic chain of hexanuclear double azido-bridged copper(II) units (the values of the magnetic coupling within and between the hexameric units being +61.1 and +0.0062 cm(-)(1), respectively). Finally, the magnetic properties of 3 were successfully analyzed through a model of a copper(II) chain with regular alternating of three ferromagnetic interactions, J(1) = +69.4 (across the double end-on azido bridges in the equatorial plane), J(2) = +11.2 (through the tppz bridge), and J(3) = +3.4 cm(-)(1) (across the single end-on azido bridge).  相似文献   

5.
The first two transition metal compounds incorporating triazole-nitronyl-nitroxide radicals as ligands have been synthesized. These compounds are [Cu(4-Me-3-Nit-trz)(4)](ClO(4))(2) (1) and [Ni(4-Me-3-Nit-trz)(4)](ClO(4))(2) (2) with 4-Me-3-Nit-trz = 2-(3-[4-methyl-1,2,4-triazolyl])-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide. Compound 1 crystallizes in the triclinic system, space group P&onemacr;. The lattice parameters are a = 9.742(2) ?, b = 12.214(12) ?, c = 12.981(4) ?, alpha = 67.19(4) degrees, beta = 81.48(2) degrees, and gamma = 79.24(4) degrees, with Z = 1. The structure consists of centrosymmetrical [Cu(4-Me-3-Nit-trz)(4)]](2+)cations and noncoordinated perchlorate anions. The Cu(II) ion is in an N(4)O(2) elongated tetragonal environment with two oxygen atoms of two nitroxide groups occupying the apical positions. Within the lattice the cations form infinite chains with short intermolecular contacts involving the nitronyl-nitroxide moieties of two adjacents cations. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization at 2 K have been investigated. Both intermolecular antiferromagnetic and intramolecular ferromagnetic interactions are operative. A theoretical model has been developed to interpret quantitatively the magnetic data, which allows us to determine the values of the interaction parameters.  相似文献   

6.
A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 ?. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 ?. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.  相似文献   

7.
When the ligand 1,4,5-triazanaphthalene (abbreviated as tan) is reacted with Cu(II) BF(4)(-) and ClO(4)(-) salts, a variety of mononuclear compounds has been found, all with the [Cu(tan)(4)] unit and varying amounts of weakly coordinating axial ligands and lattice solvents. Reproducible compounds formed include two purple compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(CH(3)OH)(2)(H(2)O) (1) and [Cu(tan)(4)](BF(4))(2)(CH(3)OH)(1.5)(H(2)O) (3), and two blue compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(H(2)O)(2) (2) and [Cu(tan)(4)](2)(BF(4))(2)(H(2)O)(2) (4). Upon standing at room temperature, red-coloured, mixed-valence dinuclear-based 3D coordination polymers are formed by conversion of the purple/blue products, of which [Cu(2)(tan)(4)](n)(BF(4))(3n) (5) and the isomorphic methanol-water adduct [Cu(tan)(4)](n)(BF(4))(3n)(CH(3)OH)(n)(H(2)O)(5n) (5A) are presented in this paper. In addition a fully reduced dinuclear Cu(I) compound of formula [Cu(2)(tan)(3)(ClO(4))(2)] (7) has been observed, and structurally characterized, as a rare three-blade propeller structure, with a Cu-Cu distance of 2.504 ?.  相似文献   

8.
The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.  相似文献   

9.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

10.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

11.
A series of Cu(I) complexes with a [Cu(NN)(PP)](+) moiety, [Cu(phen)(pba)](BF(4)) (1a), [Cu(2)(phen)(2)(pbaa)](BF(4))(2) (2a), [Cu(2)(phen)(2)(pnaa)](BF(4))(2) (3a), [Cu(2)(phen)(2)(pbbaa)](BF(4))(2) (4a), [Cu(dmp)(pba)](BF(4)) (1b), [Cu(2)(dmp)(2)(pbaa)](BF(4))(2) (2b), [Cu(2)(dmp)(2)(pnaa)](BF(4))(2) (3b) and [Cu(2)(dmp)(2)(pbbaa)](BF(4))(2) (4b) (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, pba = N,N-bis((diphenylphosphino)methyl)benzenamine, pbaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)benzene-1,4-diamine, pnaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)naphthalene-1,5-diamine and pbbaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)biphenyl-4,4'-diamine), were rationally designed and synthesized. These complexes were characterized by (1)H and (31)P NMR, electrospray mass spectrometry, elemental analysis and X-ray crystal structure analysis. Introduction of different central arene spacers (phenyl, naphthyl, biphenyl) into ligands, resulting in the size variation of these complexes, aims to tune the photophysical properties of the complexes. Each Cu(I) ion in these complexes adopts a distorted tetrahedral geometry constructed by the chelating diimine and phosphine groups. Intermolecular C-H···π and/or π···π interactions are involved in the solid states. The dmp-containing complex exhibits better emission relative to the corresponding phen complex due to the steric encumbrance of bulky alkyl groups. Furthermore, for complexes with identical diimine but different phosphine ligands, the tendency of increased emission lifetime as well as blue-shifted emission in the solid state follows with the decrease in size of complexes. Intermolecular C-H···π interactions have an influence on the final solid state photophysical properties through vibrationally relaxed non-radiative energy transfer in the excited state. Smaller-sized complexes show better photophysical properties due to less vibrationally relaxed behavior related to flexible C-H···π bonds. Nevertheless, the tendency for increased quantum yield and emission lifetime, as well as blue-shifted emission in dilute solution goes with the increase in size of complexes. The central arene ring (phenyl, naphthyl or biphenyl) has an influence on the final photophysical properties. The larger the π-conjugated extension of central arene ring is, the better the photophysical properties of complex are. The rigid and large-sized complex 3b, with a high quantum yield and long lifetime, is the best luminophore among these complexes.  相似文献   

12.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

13.
Li Z  Du S  Wu X 《Inorganic chemistry》2004,43(16):4776-4777
Reaction of [MoOS(3)](2)(-) and [WS(4)](2)(-) with Cudtp (dtp = diethyl dithiophosphate) gave rise to the clusters [Bu(4)N](2)[(MoOS(3))(4)Cu(12)(dtp)(6)], 1, and [Et(4)N][(WS(4)Cu(4))(dtp)(3)], 2, respectively. In cluster 1, the dtp- ligands act as both monodentate and bidentate ligands that bridge between Cu atoms and link together a closed double-cubane-like [Mo(2)O(2)S(6)Cu(6)](2+) core and two incomplete cubane-like [MoOS(3)Cu(3)]+ units. In cluster 2, the [WS(4)Cu(4)](2+) fragments were connected via bidentate and doubly bridging dtp- bridges to give a chain polymeric anion. Cluster 1 is the first example of a Mo/Cu/S cluster that contains a closed double-cubane-like structure. Compound 2 is also rare and the first W/Cu/S polymer with dtp- linkages.  相似文献   

14.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

15.
A tridentate Schiff base carboxylate ligand, derived from the condensation of pyridine 2-carboxaldehyde with anthranilic acid, reacts with copper trifluoroacetate salt to give rise to the helical chain complex [Cu(C(13)H(9)N(2)O(2))(F(3)CCO(2))](n)() (1) and with copper nitrate to give rise to the tetranuclear complex [[Cu(4)(C(13)H(9)N(2)O(2))(4)(H(2)O)(4)].3.5NO(3).0.5N(3)] (2) with the addition of azide salt. The structures of these complexes have been solved by X-ray crystallography. The Cu(II) ions are in a distorted square-pyramidal environment in complex 1. They are sequentially bridged by carboxylate groups in the syn-anti conformation, resulting in the formation of an infinite helix like chain along the crystallographic c-axis. The crystal structure of complex 2 consists of tetranuclear [Cu(4)(L)(4)(H(2)O)(4)](4+) (L = C(13)H(9)N(2)O(2)(-)) cations and isolated NO(3)(-) and N(3)(-) anions in the ratio 1:3.5:0.5, respectively, involving bridging carboxylate groups in the syn-anti conformation. For 1 the carboxylato-Cu(II) coordination is apical-basal, while for 2 it is basal-basal. From the magnetic susceptibility measurements the complex 1 is found to exhibit very weak antiferromagnetic interaction whereas a weak ferromagnetic coupling has been established for complex 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

16.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

17.
The [Cu(3)(dppm)(3)OH](BF(4))(2) cyclic cluster host is found to be luminescent at 298 K (lambda(max) = 540 nm; tau(e) = 89 +/- 9 &mgr;s; Phi(e) = 0.14 +/- 0.01) in degassed ethanol solutions and at 77 K (lambda(max) = 480 nm; tau(e) = 170 +/- 40 &mgr;s; Phi = 0.73 +/- 0.07) also in ethanol. The nature of the lowest energy excited states has been addressed theoretically using density functional theory and experimentally using UV-visible, luminescence, and polarized luminescence spectroscopy and is found to be (1,3)A(2) arising from the.(18e)(4)(7a(2))(1)(13a(1))(1) electronic configuration. The excited state geometry optimization for the model Cu(3)(PH(3))(6)OH(2+) compound in its T(1) state ((3)A(2)) has been performed using density functional theory and compared to its ground state structure. The Cu.Cu bond length is expected to decrease greatly in the excited state (calculated DeltaQ approximately 0.47 ?), in agreement with the d(10) electronic configuration. The perturbation of the photophysical properties by the addition of two guest carboxylate anions has been investigated. From the Stern-Volmer plots, the quenching constants, k(q), are 1.65 x 10(8) and 5.10 x 10(8) M(-)(1) s(-)(1) for acetate and 4-aminobenzoate, respectively, which are also proportional to the relative binding strengths of the substrates with Cu(3)(dppm)(3)OH(2+) (i.e., acetate < 4-aminobenzoate).  相似文献   

18.
Four new neutral copper-azido polymers [Cu(6)(N(3))(12)(aem)(2)](n)(1), [Cu(6)(N(3))(12)(dmeen)(2)(H(2)O)(2)](n) (2), [Cu(6)(N(3))(12)(N,N'-dmen)(2)](n) (3), and [Cu(6)(N(3))(12)(hmpz)(2)](n) (4) [aem = 4-(2-aminoethyl)morpholine; dmeen = N,N-dimethyl-N'-ethylethylenediamine; N,N'-dmen = N,N'-dimethylethylenediamine and hmpz = homopiperazine] have been synthesized by using 0.33 mol equiv of the chelating diamine ligands with Cu(NO(3))(2)·3H(2)O/CuCl(2)·2H(2)O and an excess of NaN(3). Single crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu(II)(6) building blocks. But the overall structures of these complexes vary widely in dimensionality. While 1 is three-dimensional (3D) in nature, 2 and 3 have a two-dimensional (2D) arrangement (with different connectivity) and 4 has a one-dimensional (1D) structure. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all the four complexes. The experimental susceptibility data have been analyzed by some theoretical model equations.  相似文献   

19.
Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].  相似文献   

20.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号