首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bifurcations in a forced softening duffing oscillator   总被引:1,自引:0,他引:1  
The response of a damped Duffing oscillator of the softening type to a harmonic excitation is analyzed in a two-parameter space consisting of the frequency and amplitude of the excitation. An approximate procedure is developed for the generation of the bifurcation diagram in the parameter space of interest. It is a combination of second-order perturbation solutions of the system in the neighborhood of its non-linear resonances and Floquet analysis. The results show that the proposed scheme is capable of predicting symmetry-breaking and period-doubling bifurcations as well as Jumps to either bounded or unbounded motions. The results obtained are validated using analogand digital-computer simulations, which show chaos and unbounded motions, among other behaviors.  相似文献   

2.
Various authors have shown that, near the onset of a period-doubling bifurcation, small perturbations in the control parameter may result in much larger disturbances in the response of the dynamical system. Such amplification of small signals can be measured by a gain defined as the magnitude of the disturbance in the response divided by the perturbation amplitude. In this paper, the perturbed response is studied using normal forms based on the most general assumptions of iterated maps. Such an analysis provides a theoretical footing for previous experimental and numerical observations, such as the failure of linear analysis and the saturation of the gain. Qualitative as well as quantitative features of the gain are exhibited using selected models of cardiac dynamics.  相似文献   

3.
In this paper, a periodic parameter-switching system about Lorenz oscillators is established. To investigate the bifurcation behavior of this system, Poincaré mapping of the whole system is defined by suitable local sections and local mappings. The location of the fixed point and the parameter values of local bifurcations are calculated by the shooting method and Runge–Kutta method. Then based on the Floquent theory, we conclude that the period-doubling and saddle-node bifurcations play an important role in the generation of various periodic solutions and chaos. Meanwhile, upon the analysis of the equilibrium points of the subsystems, we explore the mechanisms of different periodic switching oscillations.  相似文献   

4.
The weakly nonlinear resonant response of an orthogonal double pendulum to planar harmonic motions of the point of suspension is investigated. The two pendulums in the double pendulum are confined to two orthogonal planes. For nearly equal length of the two pendulums, the system exhibits 1:1 internal resonance. The method of averaging is used to derive a set of four first order autonomous differential equations in the amplitude and phase variables. Constant solutions of the amplitude and phase equations are studied as a function of physical parameters of interest using the local bifurcation theory. It is shown that, for excitation restricted in either plane, there may be as many as six pitchfork bifurcation points at which the nonplanar solutions bifurcate from the planar solutions. These nonplanar motions can become unstable by a saddle-node or a Hopf bifurcation, giving rise to a new branch of constant solutions or limit cycle solutions, respectively. The dynamics of the amplitude equations in parameter regions of the Hopf bifurcations is then explored using direct numerical integration. The results indicate a complicated amplitude dynamics including multiple limit cycle solutions, period-doubling route to chaos, and sudden disappearance of chaotic attractors.  相似文献   

5.
Both the symmetric period n-2 motion and asymmetric one of a one-degree- of-freedom impact oscillator are considered.The theory of bifurcations of the fixed point is applied to such model,and it is proved that the symmetric periodic motion has only pitchfork bifurcation by the analysis of the symmetry of the Poincarémap.The numerical simulation shows that one symmetric periodic orbit could bifurcate into two antisymmet- ric ones via pitchfork bifurcation.While the control parameter changes continuously, the two antisymmetric periodic orbits will give birth to two synchronous antisymmetric period-doubling sequences,and bring about two antisymmetric chaotic attractors subse- quently.If the symmetric system is transformed into asymmetric one,bifurcations of the asymmetric period n-2 motion can be described by a two-parameter unfolding of cusp, and the pitchfork changes into one unbifurcated branch and one fold branch.  相似文献   

6.
Ma   Wei  Mapuranga  Tafara 《Nonlinear dynamics》2023,111(9):7993-8020

In this research, we offer eigenvalue analysis and path following continuation to describe the impact, stick, and non-stick between the particle and boundaries to understand the nonlinear dynamics of an extended Fermi oscillator. The principles of discontinuous dynamical systems will be utilized to explain the moving process in such an extended Fermi oscillator. The motion complexity and stick mechanism of such an oscillator are demonstrated using periodic and chaotic motions. The major parameters are the frequency, amplitude in periodic excitation force, and the gap between the top and bottom boundary. We employ path-following analysis to illustrate the bifurcations that lead to solution destabilization. We present the evolution of the period solutions of the extended Fermi oscillator as the parameter varies. From the viewpoint of eigenvalue analysis, the essence of period-doubling, saddle-node, and Torus bifurcation is revealed. Numerical continuation methods are used to do a complete one- and two-parameter bifurcation analysis of the extended Fermi oscillator. The presence of codimension-one bifurcations of limit cycles, such as saddle-node, period-doubling, and Torus bifurcations, is shown in this work. Bifurcations cause all solutions to lose stability, according to our findings. The acquired results provide a better understanding of the extended Fermi oscillator mechanism and demonstrate that we may control the system dynamics by modifying the parameters.

  相似文献   

7.
A second-order delay differential equation (DDE) which models certain mechanical and neuromechanical regulatory systems is analyzed. We show that there are points in parameter space for which 1:2 resonant Hopf–Hopf interaction occurs at a steady state of the system. Using a singularity theoretic classification scheme [as presented by LeBlanc (1995) and LeBlanc and Langford (1996)], we then give the bifurcation diagrams for periodic solutions in two cases: variation of the delay and variation of the feedback gain near the resonance point. In both cases, period-doubling bifurcations of periodic solutions occur, and it is argued that two tori can bifurcate from these periodic solutions near the period doubling point. These results are then compared to numerical simulations of the DDE.  相似文献   

8.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

9.
惯性式冲击振动落砂机周期倍化分岔的反控制   总被引:1,自引:0,他引:1  
在不改变惯性式冲击振动落砂机系统平衡解结构的前提下,考虑碰撞振动系统的Poincaré映射的隐式特点以及经典的映射周期倍化分岔临界准则给反控制带来的困难,基于不直接依赖于特征值计算的周期倍化分岔显式临界准则,研究了落砂机系统周期倍化分岔的反控制.论文首先对落砂机系统施加线性反馈控制,得到受控闭环系统的Poincaré映射,并应用不直接依赖于特征值计算的周期倍化分岔显式临界准则,获得了系统发生周期倍化分岔的控制参数区域.然后应用中心流形-正则形方法分析了周期倍化分岔的稳定性.最终采用数值仿真验证了在任意指定的系统参数点通过控制能产生稳定的周期倍化分岔解.  相似文献   

10.
A new perturbation method for a weakly nonlinear two-dimensional discrete-time dynamical system is presented. The proposed technique generalizes the asymptotic perturbation method that is valid for continuous-time systems and detects periodic or almost-periodic orbits and their stability. Two equations for the amplitude and the phase of solutions are derived and their fixed points correspond to limit cycles for the starting nonlinear map. The method is applied to various nonlinear (autonomous or not) two-dimensional maps. For the autonomous maps we derive the conditions for the appearance of a supercritical Hopf bifurcation and predict the characteristics of the corresponding limit cycle. For the nonautonomous maps we show amplitude-response and frequency-response curves. Under appropriate conditions, we demonstrate the occurrence of saddle-node bifurcations of cycles and of jumps and hysteresis effects in the system response (cusp catastrophe). Modulated motion can be observed for very low values of the external excitation and an infinite-period bifurcation occurs if the external excitation increases. Analytic approximate solutions are in good agreement with numerically obtained solutions.  相似文献   

11.
The bifurcation and chaos phenomena of two-dimensional airfoils with multiple strong nonlinearities are investigated.First,the strongly nonlinear square and cubic plunging and pitching stiffness terms are considered in the airfoil motion equations,and the fourth-order Runge-Kutta simulation method is used to obtain the numerical solutions to the equations.Then,a post-processing program is developed to calculate the physical parameters such as the amplitude and the frequency based on the discrete numerical solutions.With these parameters,the transition of the airfoil motion from balance,period,and period-doubling bifurcations to chaos is emphatically analyzed.Finally,the critical points of the period-doubling bifurcations and chaos are predicted using the Feigenbaum constant and the first two bifurcation critical values.It is shown that the numerical simulation method with post-processing and the prediction procedure are capable of simulating and predicting the bifurcation and chaos of airfoils with multiple strong nonlinearities.  相似文献   

12.
Cascades of period-doubling bifurcations have attracted much interest from researchers of dynamical systems in the past two decades as they are one of the routes to onset of chaos. In this paper we consider routes to onset of chaos involving homoclinic-doubling bifurcations. We show the existence of cascades of homoclinic-doubling bifurcations which occur persistently in two-parameter families of vector fields on ?3. The cascades are found in an unfolding of a codimension-three homoclinic bifurcation which occur an orbit-flip at resonant eigenvalues. We develop a continuation theory for homoclinic orbits in order to follow homoclinic orbits through infinitely many homoclinic-doubling bifurcations.  相似文献   

13.
The Laguerre polynomial approximation method is applied to study the stochastic period-doubling bifurcation of a double-well stochastic Duffing system with a random parameter of exponential probability density function subjected to a harmonic excitation. First, the stochastic Duffing system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then nonlinear dynamical behavior about stochastic period-doubling bifurcation can be fully explored. Numerical simulations show that similar to the conventional period-doubling phenomenon in the deterministic Duffing system, stochastic period-doubling bifurcation may also occur in the stochastic Duffing system, but with its own stochastic modifications. Also, unlike the deterministic case, in the stochastic case the intensity of the random parameter should also be taken as a new bifurcation parameter in addition to the conventional bifurcation parameters, i.e. the amplitude and the frequency of harmonic excitation.  相似文献   

14.
一类非光滑映射的边界碰撞分岔   总被引:1,自引:0,他引:1  
对于一类分段映射讨论了非线性幂次z导致的不同非光滑性, 推导了周期n 解的边界碰撞分岔及光滑flip和fold 分岔条件. 通过数值仿真验证了这些分岔条件的正确性, 发现存在稳定周期窗的加周期分岔序列是非光滑映射的一个普遍现象, 根本原因在于边界碰撞分岔和光滑flip 或fold 分岔相互作用. 当z取值不同分岔序列有很大的不同, 而参数γ 对于分岔序列的结构影响不大, 因此令参数γ=0 可简化映射的参数分析.  相似文献   

15.
Cheng  Lifang  Wei  Xiukun  Cao  Hongjun 《Nonlinear dynamics》2018,93(4):2415-2431

The effect of the nonlinear terms on bifurcation behaviors of limit cycles of a simplified railway wheelset model is investigated. At first, the stable equilibrium state loses its stability via a Hopf bifurcation. The bifurcation curve is divided into a supercritical branch and a subcritical one by a generalized Hopf point, which plays a key role in determining the occurrence of flange contact and derailment of high-speed railway vehicles, and the occurrence of this critical situation is an important decision-making criteria for design parameters. Secondly, bifurcations of limit cycles are discussed by comparing the bifurcation behavior of cycles for two different nonlinear parameters. Unlike local Hopf bifurcation analysis based on a single bifurcation parameter in most papers, global bifurcation analysis of limit cycles based on two bifurcation parameters is investigated, simultaneously. It is shown that changing nonlinear parameter terms can affect bifurcation types of cycles and division of parameter domains. In particular, near the branch points of cycles, two symmetrical limit cycles are created by a pitchfork bifurcation and then two symmetrical cycles both undergo a period-doubling bifurcation to form two stable period-two cycles. Around the resonant points, period orbits can make several turns, whose number of turns corresponds to the ratio of resonance. Thirdly, near the Neimark–Sacker bifurcation of cycles, a stable torus is created by a supercritical Neimark–Sacker bifurcation, which shows that the orbit of the model exhibits modulated oscillations with two frequencies near the limit cycle. These results demonstrate that nonlinear parameter terms can produce very complex global bifurcation phenomena and make obvious effects on possible hunting motions even though a simple railway wheelset model is concerned.

  相似文献   

16.
This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg’s functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg’s functions have a particular bifurcations structure: the big bang bifurcations of the so-called “box-within-a-box” type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.  相似文献   

17.
A two-degrees-of-freedom vibratory system with a clearance or gap is under consideration based on the Poincard map. Stability and local bifurcation of the period-one doubleimpact symmetrical motion of the system are analyzed by using the equation of map. The routes from periodic impact motions to chaos, via pitchfork bifurcation, period-doubling bifurcation and grazing bifurcation, are studied by numerical simulation. Under suitable system parameter conditions, Neimark-Sacker bifurcations associated with periodic impact motion can occur in the two-degrees-of-freedom vibro-impact system.  相似文献   

18.
The postcritical behavior of a generaln-dimensional system around a resonant double Hopf bifurcation isanalyzed. Both cases in which the critical eigenvalues are in ratios of1:2 and 1:3 are investigated. The Multiple Scale Method is employedto derive the bifurcation equations systematically in terms of thederivatives of the original vector field evaluated at the criticalstate. Expansions of the n-dimensional vector of state variables andof a three-dimensional vector of control parameters are performed interms of a unique perturbation parameter ε, of the order ofthe amplitude of motion. However, while resonant terms only appear atthe ε3-order in the 1:3 case, they already arise at theε2-order in the 1:2 case. Thus, by truncating theanalysis at the ε3-order in both cases, first orsecond-order bifurcation equations are respectively drawn, the latterrequiring resort to the reconstitution principle. A two-degrees-of-freedom system undergoing resonant double Hopf bifurcations isstudied. The complete postcritical scenario is analyzed in terms of thethree control parameters and the asymptotic results are compared withexact numerical integrations for both resonances. Branches of periodicas well as periodically modulated solutions are found and theirstability analyzed.  相似文献   

19.
This paper presents a numerical study for the bifurcations of a softening Duffing oscillator subjected to stationary and nonstationary excitation. The nonstationary inputs used are linear functions of time. The bifurcations are the results of either a single control parameter or two control parameters that are constrained to vary in a selected direction on the plane of forcing amplitude and forcing frequency. The results indicate: 1. Delay (memory, penetration) of nonstationary bifurcations relative to stationary bifurcations may occur. 2. The nonstationary trajectories jump into the neighboring stationary trajectories with possible overshoots, while the stationary trajectories transit smoothly. 3. The nonstationary penetrations (delays) are compressed to zero with an increasing number of iterations. 4. The nonstationary responses converge through a period-doubling sequence to a nonstationary limit motion that has the characteristics of chaotic motion. The Duffing oscillator has been used as an example of the existence of broad effects of nonstationary (time dependent) and codimensional (control parameter variations in the bifurcation region) inputs which markedly modify the dynamical behavior of dynamical systems.  相似文献   

20.
高雪  陈前  刘先斌 《力学学报》2016,48(1):192-200
分段光滑隔振系统是一类具备分段刚度或阻尼的非线性动力学系统,在振动控制领域中具有广泛代表性,诸如限位隔振系统、分级汽车悬挂等. 分段光滑的刚度或阻尼特性能够实现隔振系统的特定动力学性能及提升隔振性能,如抑制共振响应、提升共振区隔振性能等,但是亦会给隔振系统的动力学行为带来诸多不利影响. 以分段双线性分段光滑隔振系统为理论模型,系统研究了摒除不利于隔振的非线性动力学现象设计方法,包括幅值跳跃、周期运动的倍周期分岔等. 首先,利用平均法与奇异性理论给出了主共振频响曲线拓扑特征的完整拼图. 研究结果表明,参数空间分为4 个区域,其中2 个区域存在幅值跳跃,而其产生跳跃原因分别由鞍结分岔与擦边分岔所导致;基于此提出避免主共振跳跃的设计方法. 其次,建立了隔振有效区内周期运动的庞加莱映射,通过特征值分析给出了避免倍周期分岔发生的条件,证实增大阻尼可以抑制倍周期分岔的发生. 最后通过数值仿真分析了噪声对多稳态运动的影响. 研究结果发现在噪声影响下,分段光滑隔振系统的响应会在不同稳态间跃迁,非常不利于隔振. 因此,在完成跳跃与倍周期分岔的防治设计后,应采用数值仿真校验系统是否存在多稳态运动.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号