首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The use of anabolic steroids is prohibited in sports. Effective control is done by monitoring their metabolites in urine samples collected from athletes. Ethical objections however restrict the use of designer steroids in human administration studies. To overcome these problems alternative in vitro and in vivo models were developed to identify metabolites and to assure a fast response by anti‐doping laboratories to evolutions on the steroid market. In this study human liver microsomes and an uPA+/+‐SCID chimeric mouse model were used to elucidate the metabolism of a steroid product called ‘Xtreme DMZ’. This product contains the designer steroid dimethazine (DMZ), which consists of two methasterone molecules linked by an azine group. In the performed stability study, degradation from dimethazine to methasterone was observed. By a combination of LC‐High Resolution Mass Spectrometry (HRMS) and GC‐MS(/MS) analysis methasterone and six other dimethazine metabolites (M1–M6), which are all methasterone metabolites, could be detected besides the parent compound in both models. The phase II metabolism of dimethazine was also investigated in the mouse urine samples. Only metabolites M1 and M2 were exclusively detected in the glucuro‐conjugated fraction; all other compounds were also found in the free fraction. For effective control of DMZ misuse in doping control samples, screening for methasterone and methasterone metabolites should be sufficient. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Rhizoma et Radix Polygoni Cuspidati (RRPC) is commonly prescribed for the treatment of amenorrhea, arthralgia, jaundice and abscess in traditional Chinese medicine. Previous pharmacological studies have indicated that polyphenols are the main pharmacological active ingredients in RRPC. Meanwhile, the poor bioavailability of polyphenols in RRPC implies that those components are probably metabolized by intestinal bacteria before absorption. However, there is rather limited information about RRPC''s metabolites produced by intestinal bacteria and the intestinal absorbed constituents. In the present study, the metabolites were characterized after the aqueous extract of RRPC was incubated with the crude enzyme of human intestinal bacteria in vitro. The metabolic characteristics of glycosides in RRPC were figured out by comparing the metabolic profiles of emodin‐8‐O‐β‐d ‐glucopyranoside and polydatin between aqueous extract of RRPC and equivalent amounts of these two glycosides. The transitional constituents absorbed into blood were investigated in rats via intraduodental administration and portal vein intubation. A total of 38 prototype components and 43 metabolites were detected and characterized in vivo. The overall results demonstrated that the intestinal bacteria played an important role in the metabolism of RRPC, and the main metabolic pathways were hydrolysis in vitro, glucuronidation and sulfation in vivo.  相似文献   

4.
5-Aminolevulinic acid (ALA)-supported fluorescence endoscopy of the urinary bladder results in a detection rate of bladder cancer superior to that of white light endoscopy. The different accumulation of the metabolite protoporphyrin IX (PPIX) in tumor cells after ALA instillation is poorly understood; however, it is crucial to optimize diagnosis and potential phototherapy. For systematic analysis of cell-type specific PPIX accumulation and metabolism two human bladder carcinoma cell lines (RT4 and J82), a normal urothelial cell line (UROtsa), and a fibroblast cell line (N1) were chosen, and grown in two different growth states to model important tissue components of the urinary bladder, i.e. tumor, normal epithelium and stroma. To quantitate PPIX content, fluorescence intensities measured by flow cytometry were matched with cellular PPIX extraction values, and related to relative ferrochelatase activity, cellular iron content, number of transferrin receptors per cell and porphobilinogen deaminase (PBGD) activity. For in vitro experiments, the initial correlation of relative flow cytometric and spectrometric measurements of PPIX provides a calibration curve for consequent flow cytometric PPIX quantification. Lower fluorescence of normal cells could be explained by significant differences of ferrochelatase activity and iron content in comparison to tumor cells. However, the content of iron was not related to transferrin receptor content. PBGD activity seemed to play a minor role for the differential accumulation of PPIX in urothelial cells. In conclusion, the in vitro culture of urothelial cells and fibroblasts indicates that the most important metabolic step for PPIX accumulation in the urinary bladder is the transition from PPIX to heme. Further investigation of PPIX metabolism does support the validation of photodynamic diagnosis, and might also lead the way to a highly specific tumor related molecule.  相似文献   

5.
As the most important marker component in Carthamus tinctorius L., hydroxysafflor yellow A (HSYA) was widely used in the prevention and treatment of cardiovascular diseases, due to its effect of improving blood supply, suppressing oxidative stress, and protecting against ischemia/reperfusion. In this paper, both an in vitro microsomal incubation and an in vivo animal experiment were conducted, along with an LC‐Q‐TOF/MS instrument and a 3‐step protocol, to further explore the metabolism of HSYA. As a result, a total of 10 metabolites were searched and tentatively identified in plasma, urine, and feces after intravenous administration of HSYA to male rats, although no obvious biotransformation was found in the simulated rat liver microsomal system. The metabolites detected involving both phase I and phase II metabolism including dehydration, deglycosylation, methylation, and glucuronic acid conjugation. A few of the metabolites underwent more than one‐step metabolic reactions, and some have not been reported before. The study would contribute to a further understanding of the metabolism of HSYA and provide scientific evidence for its pharmacodynamic mechanism research and clinical use.  相似文献   

6.
The enniatins are a group of more than 20 cyclic depsipeptides from fungi with numerous biological effects. Enniatin B is commonly one of the principal analogues in species of the genus Fusarium, known to have ionophoric, antibiotic and insecticidal activity. In the present study, enniatin B was incubated with rat, dog and human liver microsomes. The compound was extensively metabolised, and 12 biotransformation products (M1–M12) were detected and their structures tentatively identified using a combination of mass spectrometric techniques and chemical derivatisation. Ion trap mass spectrometry, multiple-stage MS n fragmentation and high-resolution mass spectrometry were the instrumental backbone for structural determination, while acetylation, methylation and Jones oxidation were useful derivatisation techniques for the localisation of the site of biotransformation. Comparison of mass spectrometric data of the metabolism products with that of enniatin B suggested that M1–M5 are monohydroxylated species, while M8–M12 are the result of multiple oxidations (oxygenation and dehydrogenation). Metabolites M6 and M7 appeared to be enniatin B homologues and are the result of N-demethylation. Our findings show that oxidation and N-demethylation are the principal metabolic pathways in enniatin B phase I metabolism.  相似文献   

7.
A potent synthetic cannabinoid receptor agonist, JHW-018, was recently detected as one of the most prominent active agents in abusively used incenses such as Spice and other herbal blends. The high pharmacological and addictive potency of JWH-018 highlights the importance of elucidating the metabolism of JWH-018, without which a meaningful insight into its pharmacokinetics and its toxicity would not be possible. In the present study, the cytochrome P450 phase I metabolites of JWH-018 were investigated, after in vitro incubation of the drug with human liver microsomes, followed by liquid chromatography–tandem mass spectrometry analysis. This revealed monohydroxylation of the naphthalene ring system, the indole moiety, and the alkyl side chain. In addition, observations were made of dihydroxylation of the naphthalene ring system, and the indole moiety, or as result of a combination of monohydroxylations of both the naphthalene ring system and the indole moiety or the alkyl side chain, or a combination of monohydroxylations of both the indole ring system and the alkyl side chain. There is also evidence of trihydroxylation at different locations of the hydroxyl groups in the molecule. Furthermore, dehydration of the alkyl side chain, in combination with both monohydroxylation and dihydroxylation as well as arene oxidation of the naphthalene ring system, combined with both monohydroxylation and dihydroxylation at different sites of oxidation were found. N-dealkylation also in combination with both monohydroxylation and dihydrodiol formation of the N-dealkylated metabolite was detected. Finally, a metabolite was found carboxylated at the alkyl side chain.  相似文献   

8.
The oxidative in vitro metabolism of epibatidine was investigated using liver microsomes from rat, dog, rhesus monkey and human. Analysis was performed using liquid chromatography-mass spectrometry (LC-MS) using both achiral and chiral stationary phases. Comparison of the metabolism of the (+)- and (-)-enantiomers revealed species differences in the extent of metabolism, with rhesus monkey>dog>rat=human. Furthermore, differences in the routes of metabolism for epibatidine enantiomers were also observed, with mass spectra consistent with hydroxylation of the azabicycle for (-)-epibatidine and with the formation of diastereomeric N-oxides for (+)-epibatidine being obtained. For chiral LC-MS, a volatile ion-pair reagent of heptafluorobutyric acid was used in place of pentanesulphonic acid with no deterioration in chiral selectivity. Analysis of the same samples by chiral LC-MS revealed no evidence for metabolic chiral interconversion and chiral analysis from a metabolic time course of racemic material revealed enantiomers to be metabolised to approximately the same extent. Such findings may be important particularly should epibatidine be investigated in non-rodent species.  相似文献   

9.
10.
11.
12.
L-454,560 is a potent phosphodiesterase 4 (PDE4) inhibitor which was identified as a development candidate for the treatment of asthma and chronic obstructive pulmonary disease (COPD). As part of the discovery of this compound, interspecies in vitro metabolism data was generated using liver microsomes and hepatocytes in order to understand the metabolic fate of the compound. In microsomes, metabolism of the 3-methyl-1,2,4-oxadiazole ring was the predominant pathway observed, including ring cleavage. In rat hepatocytes, hydroxylation of the methyl group on the oxadiazole ring and double-bond isomerization were the most abundant metabolites observed. No major species differences were found in terms of microsomal metabolite profiles. The use of LC with UV and MS detection is highlighted, as well as information from tandem mass spectrometry and NMR.  相似文献   

13.
Dimethyl sulfoxide (DMSO) is widely and routinely used as a vehicle in various investigations, especially within the pharmaceutical industry. It has been used for the evaluation of the effects of hydrophobic xenobiotics on cells, as well as for the cryopreservation of biological material. Isothermal microcalorimetry is a powerful tool for monitoring heat production, which is a function of general cellular metabolic activity. Employing this microcalorimetric technique, a low concentration of DMSO routinely used for the addition of hydrophobic substances to, e.g., cell cultures, was shown to decrease heat production (per unit DNA) by the rat hepatoma cell lines FAO, Morris 7800C1 and H4IIE by 32–38%. However, such low concentrations of DMSO did not influence the cell cycle or the degree of apoptosis in these cell populations. Caution is thus advisable when utilizing DMSO as a vehicle in cell culture experiments.  相似文献   

14.
A simple and robust solid-phase extraction (SPE) procedure for the cleanup and sample preconcentration of antifungals (ketoconazole, clotrimazole, itraconazole, fluconazole, and voriconazole) and their metabolites after incubation with human liver microsomes, as well as a simplified capillary zone electrophoresis (CZE) method for their rapid analysis, have been developed to determine the stability of these compounds in in vitro samples. Three different sample pretreatment procedures using SPE with reversed-phase sorbents (100 mg C8, 100 mg C18, and 30 mg Oasis-HLB) were studied. The highest and most reproducible recoveries were obtained using a 30 mg Oasis-HLB sorbent and methanol containing 2% acetic acid as eluent. Enrichment by a factor of about four times was achieved by reconstituting the final SPE eluates to a small volume. For the CZE separation, good separations without interfering peaks due to the in vitro matrix were obtained with a simple running electrolyte using a fused-silica capillary. The best separation for all components originated by each tested drug after incubation with human liver microsomes (unmetabolized parent drug and its metabolites) was obtained using a 0.05 M phosphate running buffer (pH 2.2) without additives. The effect of the injection volume was also investigated in order to obtain the best sensitivity. Performance levels in terms of precision, linearity, limits of detection, and robustness were determined.  相似文献   

15.
The metabolic fate of the emerging drug candidate S107, possessing the potential for misuse as performance-enhancing agent in sports, was investigated by in vitro phase I and II experiments with human microsomal and S9 liver enzymes. The metabolites were identified by liquid chromatography-mass spectrometry with electrospray ionisation in positive mode (LC-ESI-MS/MS). Their collision-induced dissociation behaviour was studied by high-resolution/high accuracy Orbitrap MS(n) analysis, supported by stable isotope labelling, H/D-exchange experiments and density functional theory calculations. Monooxygenation accounted for the main phase I metabolic transformation due to N- and S-oxidation of the 1,4-benzothiazepine core, as substantiated by chemical synthesis, selective reduction methods and characteristic APCI in source fragmentation behaviour of the metabolites. Another dominant metabolic pathway was demethylation, yielding the N- and O-demethylated metabolite, respectively. The latter was further conjugated by glucuronidation as well as sulfonation in subsequent phase II metabolic reactions, whereas the N-demethylated metabolite was not amenable to conjugation. The active drug molecule itself was converted to two glucuronic acid conjugates, which are proposed to consist of two quaternary S107-N(+)-glucuronide isomers. All glucuronides were susceptible to enzymatic hydrolysis with β-glucuronidase (Escherichia coli). A comprehensive LC-ESI-MS(/MS)-based detection method for urine was developed and its fitness for purpose was assessed. The assay can serve as a potential screening and/or confirmation method for S107 in clinical drug testing and doping control analysis in the future.  相似文献   

16.
KR-32570 (5-(2-methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new reversible Na+/H+ exchanger inhibitor for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-32570 in human liver microsomes. Human liver microsomal incubation of KR-32570 in the presence of NADPH and UDPGA resulted in the formation of six metabolites, M1-M6. M1 was identified as O-desmethyl-KR-32570, on the basis of liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis with the synthesized authentic standard. M2 and M3 were suggested to be hydroxy-KR-32570 and hydroxy-O-desmethyl-KR-32570, respectively. M1, M2, and M3 were further metabolized to their glucuronide conjugates, M4, M5, and M6, respectively. In addition, the specific P450 isoforms responsible for KR-32570 oxidation to two major metabolites, O-desmethyl-KR-32570 and hydroxy-KR-32570, were identified using a combination of correlation analysis, chemical inhibition in human liver microsomes and metabolism by expressed recombinant P450 isoforms. The inhibitory potency of KR-32570 on clinically major P450s was investigated in human liver microsomes. The results show that CYP3A4 contributes to the oxidation of KR-32570 to hydroxy-KR-32570, and CYP1A2 play the predominant role in O-demethylation of KR-32570. KR-32570 was found to inhibit moderately the metabolism of CYP2C8 substrates.  相似文献   

17.
A new screening and analysis method that combines in vitro metabolism with high-performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for the screening and analysis of an antineoplastic compound, coniferyl ferulate, which is present in the rhizome of Rhizoma Chuanxiong. Infrared (IR), ultraviolet visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR) and element analysis were used to identify the molecular structure of coniferyl ferulate. The quantitative analysis of coniferyl ferulate in different extracts of Rhizoma Chuanxiong was carried out, and the metabolism of coniferyl ferulate was investigated by in vitro incubation with rat liver homogenate. The metabolite of coniferyl ferulate, ferulic acid ethyl ester, was identified by HPLC-MS, UV-Vis and IR. In addition, antineoplastic activities of coniferyl ferulate and ferulic acid ethyl ester were detected by the MTT assay. The observed inhibition rate of coniferyl ferulate on the activity of HeLa cells was over 80% at 5.4 ng μl−1. However, its metabolite, ferulic acid ethyl ester, showed no antineoplastic activity in vitro.   相似文献   

18.
Recently, liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC-ICP/MS) has been introduced to deal with some applications in the field of pharmaceutical, biomedical, and clinical analysis. In the case of drug research, the number of drugs and their metabolites containing detectable elements is quite limited. In this paper, LC-ICP/MS has been demonstrated to be suitable for the determination of S-containing drugs and their metabolites. In order to minimize the interference of polyatomic oxygen (m/z 32), the indirect detection of S, by means of the SO(+) ion (m/z 48), was optimized. For quantification purposes, it has been encountered that the percentage of organic solvent in the mobile phase strongly affects the sensitivity. Here, corrective strategies based on calibration curves established at different solvent concentrations (solvent-zone quantification) and post-column gradient compensation have been proposed to circumvent sensitivity variations. Results obtained have shown that suitable calibration models have been built for any compound regardless of the solvent percentage at which it is eluted from the chromatographic column. To prove the applicability of this methodology, the metabolism of ethacrynic acid and tiotropium bromide has been studied in vitro and in vivo. In the first case, ethacrynic acid does not contain S in its structure, however, the major route of metabolism for this compound consists of the formation of glutathione adduct and its further degradation. In the second case, tiotropium bromide contains two S atoms in its structure.  相似文献   

19.
Aspirin eugenol ester (AEE) is a promising drug candidate for treatment of inflammation, pain and fever and prevention of cardiovascular diseases with fewer side effects than its precursor, aspirin. Investigation into its metabolic process in target animal species will help to illustrate its mechanism of action and to establish its residual mark compound to formulate its dosage. Six beagle dogs were orally given a dose of 20 mg kg?1 of AEE and one dog was used to prepare blank liver microsomes. Their liver microsomes were prepared for in vitro study and their plasma and urine were collected for in vivo metabolic analysis using liquid chromatography tandem mass spectrometry. In this study we identified 10 metabolites, M1, M2, M3, M4, M5 in phase I and M6, M7, M8, M9, M10 in phase II. Based on the metabolites of AEE, the pathways of AEE metabolism in dog were demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
《Tetrahedron: Asymmetry》2000,11(2):405-408
A high yielding, simple synthesis is described starting from d-glucose to produce gram quantities of a glucopyranosylidene-spiro-thiohydantoin. This compound efficiently inhibited the activity of rat liver glycogen phosphorylase a; moreover, it also activated phosphorylase phosphatase which, in turn, decreased the amount of glycogen phosphorylase a. Both effects result in the inhibition of glycogen mobilization and the formation of glucose from glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号