首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了有机发光材料2-苯基-8-羟基喹啉锌Zn(Q-Ph)2, 通过1H NMR, UV-Vis及MS等手段对配合物进行了结构表征. 利用该材料与高效的红光染料DCJTB复合制备出全新结构的非掺杂型OLED器件, 其结构为ITO/NPB/DCJTB/Zn(Q-Ph)2/AlQ3/Al. 将DCJTB超薄层的厚度调节到0—2.0 nm范围内, OLED器件的发光色调经历了黄光、红光和橙光的转变, 并且探讨了DCJTB厚度对OLED发光机理以及发光复合区域的影响. 当DCJTB的厚度为0.5 nm时, 获得了稳定的红光发射, 该器件在5.5 V电压下启亮, 在25 V外加电压下发光亮度达到420 cd/m2, 对应的电流密度为250 mA/cm2.  相似文献   

2.
Molecular glass material (4-(5-(4-(diphenylamino)phenyl)-2-oxadiazolyl)phenyl)triphenylsilane (Ph(3)Si(PhTPAOXD)) was used as the blue light-emitting material in the fabrication of high-performance organic light-emitting diodes (OLEDs). In the optimization of performance, five types of OLEDs were constructed from Ph(3)Si(PhTPAOXD): device I, ITO/NPB/Ph(3)Si(PhTPAOXD)/Alq(3)/Mg:Ag, where NPB and Alq(3) are 1,4-bis(1-naphylphenylamino)biphenyl and tris(8-hydroxyquinoline)aluminum, respectively; device II, ITO/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where TPBI is 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene; device III, ITO/Ph(2)Si(Ph(NPA)(2))(2)/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where Ph(2)Si(Ph(NPA)(2))(2) is bis(3,5-bis(1-naphylphenylamino)phenyl)-diphenylsilane, a newly synthesized tetraphenylsilane-containing triarylamine as hole-transporting material; device IV, ITO/Ph(2)Si(Ph(NPA)(2))(2)/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag; device V, ITO/CuPc/NPB /Ph(3)Si(PhTPAOXD)/Alq(3)/LiF/Al, where CuPc is Cu(II) phthalocyanine. Device performances, including blue color purity, electroluminescence (EL) intensity, current density, and efficiency, vary drastically by changing the device thickness (100-600 A of the light-emitting layer) and materials for hole-transporting layer (NPB and/or Ph(2)Si(Ph(NPA)(2))(2)) or electron-transporting material (Alq(3) or TPBI). One of the superior OLEDs is device IV, showing maximum EL near 19 000 cd/m(2) with relatively low current density of 674 mA/cm(2) (or near 3000 cd/m(2) at 100 mA/cm(2)) and high external quantum efficiency of 2.4% (1.1 lm/W or 3.1 cd/A). The device possesses good blue color purity with EL emission maximum (lambda(max)(EL)) at 460 nm, corresponding to (0.16, 0.18) of blue color chromaticity on CIE coordinates. In addition, the device is reasonably stable and sustains heating over 100 degrees C with no loss of luminance on the basis of the annealing data for device V. Formation of the exciplex at the interface of NPB and Ph(3)Si(PhTPAOXD) layers is verified by EL and photoluminescence (PL) spectra studies on the devices with a combination of different charge transporting materials. The EL due to the exciplex (lambda(max)(EL) at 490-510 nm) can be properly avoided by using a 200 A layer of Ph(3)Si(PhTPAOXD) in device I, which limits the charge-recombination zone away from the interface area.  相似文献   

3.
利用真空蒸镀方法, 以两种新型硅基化合物同族衍生物材料BMPSiE(1,2-bis(1-methyl-2,3,4,5-tetraphenyl-1H-Silole-1-yl)ethane)和BMPThSi(1,1’-dimethyl-3,3’,4,4’-tetraphenyl-2,2’,5,5’-tetra(thiophen-2-yl)-1,1’-bi(1 H-silole))为发光层, NPB(N,N’-diphenyl-N,N’-bis (3-methylphenyl)-1,1’-biphenyl-4,4’-diamine)和Alq3(tris (8-hydroxyquinolinolato) aluminum)分别为空穴和电子传输层, 制备了结构简单的高亮度电致发光器件, 表征了器件的光电性能, 并通过器件的能级结构对器件的发光机理进行了讨论. 结果表明, 驱动电压为20 V时, BMPSiE和BMPThSi的三层结构的器件最大亮度分别为9991.9 和15261.5 cd·m-2, 流明效率分别为0.36 和0.31 lm·W-1. 器件发光光谱谱峰位于483和495 nm处, 分别为BMPSiE和BMPThSi的特征光谱, CIE(国际发光照明委员会)色度图坐标为(0.202, 0.337)和(0.246, 0.419),且不随外加电压的改变而变化.  相似文献   

4.
Novel hole-transporting materials based on carbazole dendrimers, namely G1CBC and G2CBC were synthesized and characterized. They are thermally stable with high glass transition temperatures (Tg) up to 245 °C and exhibit chemically-stable redox processes. Double-layer green OLEDs using these materials as the hole-transporting layer (HTL) with the device configuration of ITO/HTL/Alq3/LiF:Al emit brightly (λem 522-534 nm) from the Alq3 layer with a maximum luminance and low turn-on voltage of 15,890 cd/m2 and 3.0 V, respectively. Their ability as HTLs in terms of device performance is comparable to the common hole-transporter N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1-biphenyl)-4,4-diamine (NPB), however their thermal properties were far greater than both NPB and N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD).  相似文献   

5.
Self-assembled monolayers (SAMs) of binary mixtures of 1-butylphosphonic acid and the trifluoromethyl-terminated analogue (4,4,4-trifluoro-1-butylphosphonic acid) were formed on ITO surfaces to tune the work function of ITO over a range of 5.0 to 5.75 eV by varying the mixing ratio of the two adsorbents. The mixed SAM-modified ITO surfaces were used as the anode in the fabrication of OLED devices with a configuration of ITO/SAM/HTL/Alq3/MX/Al, where HTL was the NPB or BPAPF hole-transporting layer and MX was the LiF or Cs(2)CO(3) injection layer. It was shown that, depending on the HTL or MX used, the maximum device current and the maximum luminance efficiency occurred with anodes of different modifications because of a shift in the point of hole/electron carrier balance. This provides information on the charge balance in the device and points to the direction to improve the performance.  相似文献   

6.
使用星形六苯芴类新材料1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene (HKEthFLYPh)分别制备了三种不同结构的有机电致发光器件. 在结构为indium-tin oxide (ITO)/NPB (40 nm)/HKEthFLYPh (10 nm)/Alq3(50 nm)/Mg:Ag (200 nm)的器件中, 获得了两个电致发光谱峰分别位于435 和530 nm处的明亮白光. HKEth-FLYPh是能量传输层; N,N’-bis-(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine (NPB)是空穴传输层和蓝色发光层; tris(8-hydroxyquinoline)aluminum (Alq3)是电子传输层和绿色发光层. 结果表明, 当驱动电压为15 V时, 器件的最大亮度达到8523 cd·m-2; 在5.5 V时, 器件达到最大流明效率为1.0 lm·W-1. 在电压为9 V时, CIE色坐标为(0.29, 0.34). 此外, 通过改变HKEthFLYPh层的厚度, 发现蓝色发射的相对强度随着HKEthFLYPh层厚度的增加而增强.  相似文献   

7.
设计合成了3-[2-(8-羟基喹啉基)-乙烯基]-N-对甲苯基咔唑(8)和3-[2-(8-羟基喹啉基)-乙烯基]-N-对甲氧苯基咔唑(9)及其金属锌配合物(10和11), 用UV-Vis, FTIR, ESI-MS, FAB-MS, 1H NMR和元素分析确认了化合物的结构. 热重分析实验结果表明, 金属锌配合物(10和11)有很好的热稳定性, 这对真空蒸镀制电致发光器件是有益的. 金属锌配合物组装成有机单层发光器件的结构为ITO/Organ layer(50 nm)/Al(100 nm), 其荧光发射峰分别位于592和583 nm, 为稳定的黄色光. 这两个发光器件的最大亮度分别为489和402 cd/m2, 最大电流效率分别为0.41和1.81 cd/A. 电致发光研究表明, 通过化学修饰8-羟基喹啉的2-位取代基可以改变这两个金属锌配合物的电致发光性能.  相似文献   

8.
A pure blue light emitting binaphthyl derivative:Synthesis and properties   总被引:1,自引:1,他引:0  
A binaphthyl derivative with pyrene on 3 and 3' positions was synthesized and characterized via Suzuki coupling reaction. Emission maximum in solution was located at 390 nm with a quantum efficiency of 68% by taking 9,10-diphenyl anthracene as reference,while it is shifted to 450 nm with FWHM of 104 nm resulting from aggregation state in solid film.Glass transition temperature(Tg)and decomposition temperature were measured to be 184 and 447℃,respectively,by DSC and TGA.Unlike its photoluminescence spectrum,electroluminescent spectrum peaked at about 460 nm and shows a FWHM of 69 nm corresponding to a pure blue emission.The turn-on voltage,luminance and efficiency maximum were 5 V,2953 cd/m^2 and 1.37cd/A with CIE color coordinate of(0.16,0.15),in the device structure of ITO/NPB(40nm)/PY-BN-PY(15nm)/BPhen(40nm)/Mg:Ag.  相似文献   

9.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

10.
This contribution describes an organosiloxane cross-linking approach to robust, efficient, adherent hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). An example is 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi(2)), which combines the hole-transporting efficiency of N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl)-4,4-diamine) (TPD, prototypical small-molecule HTL material) and the strong cross-linking/densification tendencies of organosilanol groups. Covalent chemical bonding of TPDSi(2) to PLED anodes (e.g., indium tin oxide, ITO) and its self-cross-linking enable fabrication of three generations of insoluble PLED HTLs: (1) self-assembled monolayers (SAMs) of TPDSi(2) on ITO; (2) cross-linked blend networks consisting of TPDSi(2) + a hole transporting polymer (e.g., poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine), TFB) on ITO; (3) TPDSi(2) + TFB blends on ITO substrates precoated with a conventional PLED HTL, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). PLED devices fabricated using these new HTLs exhibit comparable or superior performance vs comparable devices based on PEDOT-PSS alone. With these new HTLs, current efficiencies as high as approximately 17 cd/A and luminances as high as approximately 140,000 cd/m(2) have been achieved. Further experiments demonstrate that not only do these HTLs enhance PLED anode hole injection but they also exhibit significantly greater electron-blocking capacity than PEDOT-PSS. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL components, and reduced HTL-induced luminescence quenching, and can be applied as a general strategy to enhance PLED performance.  相似文献   

11.
Tridentate cyclometalated platinum(II) complexes bearing sigma-alkynyl ligands exhibit tunable photoluminescence and enhanced stability during vacuum deposition; OLEDs based on these materials display orange to red electrophosphorescence with low turn-on voltages (approximately 4 V), maximum luminance approaching 10,000 cd m-2 and efficiency up to 4.2 cd A-1.  相似文献   

12.
High-performance organic light-emitting diodes (OLEDs) that use phosphorescent and/or thermally activated delayed fluorescence emitters are capable of realizing 100 % electron-to-photon conversion. The host materials in these OLEDs play crucial roles in determining OLED performance. Carbazole derivatives are frequently used as host materials, among which 3,3-bis(9H-carbazol-9-yl)biphenyl ( mCBP ) is often used for lifetime testing in scientific studies. In this study, the π conjugation of the carbazole unit was expanded to enhance OLED lifetime by designing and developing two benzothienocarbazole (BTCz)-based host materials, namely m1BTCBP and m4BTCBP . Among these host materials, m1BTCBP formed a highly efficient [Ir(ppy)3]-based OLED with an operational luminescence half-life (LT50) of over 300 h at an initial luminance of approximately 12000 cd m−2 (current density: 25 mA cm−2). The LT50 value at 1000 cd cm−2 was estimated to be about 23 000 h. This performance is clearly higher than that of mCBP -based OLEDs (LT50≈8500 h).  相似文献   

13.
A 1D coordination polymer, {[Zn(μ1,5-dca)2(PZA)2](PZA)2}n (1), has been synthesized and characterized by single-crystal X-ray crystallography. The coordination modes of the dicyanamide (dca) and the pyrazinamide (PZA) were inferred by IR spectroscopy. The complex was applied to organic electroluminescent (EL) devices as the emitting materials. The electroluminescent device of ITO/NPB (40 nm)/Zn polymer: CBP (30 nm) (30 nm)/BCP (15 nm)/Alq (30 nm)/LiF (1 nm)/Al (100 nm) was fabricated. The EL device emits cyan light originating from this complex with high brightness and efficiencies. For 1, a maximum luminance of 34.9 cd/A was achieved at 9 V.  相似文献   

14.
The performance of a blue polymer light‐emitting diodes (PLED) was significantly improved by doping a controlled amount (<1%) of a hole transport molecule N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4″‐diamine (NPB) into the emitting layer. Hole carrier mobility of the blue emitting polymer, BP105 (trade name of The Dow Chemicals Co.), increased from 5.27 × 10‐7 cm‐2/Vs of the pristine BP105 to 1.80 × 10‐6 cm‐2/Vs with the addition of 1% NPB in BP105. The enhanced carrier mobility greatly promoted performance of a blue PLED device with a device structure of ITO/PEDOT:PSS/BP105+x% NPB/LiF/Ca/Al. Luminance increased from 573 cd/m2 to 2,720 cd/m2 at 6V and efficiency increased from 1.1 lm/W to 1.6 lm/W at 1,000 cd/m2 with 1% NPB in BP105. The most important improvement was an increase in the lifetime of the blue device from 80 to 120 hours at an initial luminance of 400 cd/m2. We found that by choosing the appropriate dopant with good energy alignment and controlled dopant concentration, the performance of a blue PLED device could be greatly improved.  相似文献   

15.
Wang K  Huang L  Gao L  Jin L  Huang C 《Inorganic chemistry》2002,41(13):3353-3358
A novel Re(I) complex, Re(CO)(3)ClL (L = 2-(1-ethylbenzimidazol-2-yl)pyridine), has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Crystal data for C(17)H(13)ClN(3)O(3)Re: space group, orthorhombic, Pbca; a = 12.713(6) A; b = 15.103(7) A; c = 18.253(8) A; Z = 8. Stable vacuum vapor deposition of the Re complex has been verified by UV-vis and infrared spectroscopy. A two-layer electroluminescent device with configuration of ITO/TPD/Re(CO)(3)ClL/Mg(0.9)Ag(0.1)/Ag has been fabricated, which gave a turn-on voltage of as low as 3 V and a maximum luminance of 113 cd/m(2) at a bias voltage of 10.5 V, and confirmed that the Re complex can function as a bright orange-red emitter and an electron transport material in an electroluminescent device.  相似文献   

16.
A carbazole-based diaza[7]helicene, 2,12-dihexyl-2,12-diaza[7]helicene (1), was synthesized by a photochemical synthesis and its use as a deep-blue dopant emitter in an organic light-emitting diode (OLED) was examined. Compound 1 exhibited good solubility and excellent thermal stability with a high decomposition temperature (T(d)=372.1?°C) and a high glass-transition temperature (T(g), up to 203.0?°C). Single-crystal structural analysis of the crystalline clathrate (1)(2)?cyclohexane along with a theoretical investigation revealed a non-planar-fused structure of compound 1, which prevented the close-packing of molecules in the solid state and kept the molecule in a good amorphous state, which allowed the optimization of the properties of the OLED. A device with a structure of ITO/NPB (50?nm)/CBP:5?% 1 (30?nm)/BCP (20?nm)/Mg:Ag (100?nm)/Ag (50?nm) showed saturated blue light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15, 0.10); the maximum luminance efficiency and brightness were 0.22?cd?A(-1) (0.09?Lm?W(-1)) and 2365?cd?m(-2), respectively. This new class of helicenes, based on carbazole frameworks, not only opens new possibilities for utilizing helicene derivatives in deep-blue-emitting OLEDs but may also have potential applications in many other fields, such as molecular recognition and organic nonlinear optical materials.  相似文献   

17.
刘坚  韦春 《无机化学学报》2012,28(2):398-404
合成了一种含有载流子传输基新的铱配合物(BPPBI)2Ir(ECTFBD)[HBPPBI:1-苯基-2-(4-联苯基)苯并咪唑,HECTFBD:1-(9-乙基-3-咔唑基)-4,4,4-三氟-1,3-丁二酮],其结构和组成经核磁共振氢谱和元素分析所证实。研究了这种铱配合物二氯甲烷溶液的光物理和电化学性质。制作了基于这种铱配合物的电致磷光器件。器件结构是ITO/MoO3(10 nm)/NPB(80 nm)/CBP:x%(BPPBI)2Ir(ECTFBD)(20 nm)/TPBi(45 nm)/LiF/Al[x%:质量百分比为4%和7%的掺杂浓度;NPB:N4,N4′-二(1-萘基)-N4,N4′-二苯基-4,4′-联苯二胺,CBP:4,4′-二(9-咔唑基)联苯,TPBi:1,3,5-三(2-(1-苯基)苯并咪唑基)苯]。这些器件显示出深黄色的发射。对于7%掺杂浓度器件,最大的电流效率和最大发光亮度分别是5.2 cd.A-1和8 690 cd.m-2。  相似文献   

18.
Kwok CC  Ngai HM  Chan SC  Sham IH  Che CM  Zhu N 《Inorganic chemistry》2005,44(13):4442-4444
The synthesis and photophysical properties of the robust Pt(II) emitters [(O--N--N)PtX] (HO--N--N = 6-(2-hydroxyphenyl)-2,2'-bipyridine and its derivatives; X = Cl, Br, I, or -CC-Ph) are reported. Yellow electroluminescent devices based on these materials display a low turn-on voltage (1 cd m(-2) at 4 V) and a high luminance (37000 cd m(-2)). Complex 2e, [(F(t)Bu2O--N--N)PtCl], has the highest thermal stability and gave the best OLED.  相似文献   

19.
利用2,3-二苯基喹喔啉和氯亚铂酸钾(K2PtCl4)反应, 合成了一种新型喹喔啉铂的配合物(DPQ)Pt(acac), 通过元素分析, 1H NMR测定对配合物结构进行了表征, 结果显示得到的是目标化合物. 利用紫外光谱和荧光光谱对配合物进行了研究. 利用该材料作为磷光染料制备了结构为ITO/NPB (21 nm) /NPB∶7%(DPQ)Pt(acac) (17.5 nm) /BCP (7 nm)/ Alq3 (21 nm)/ Mg∶Ag(10∶1)(120 nm)/Ag(10 nm)的有机电致发光器件(OLED). 结果表明, 该配合物在442和485 nm处存在单重态1MLCT(金属到配体的电荷跃迁)和三重态3MLCT的吸收峰; 在632 nm 处有较强的金属配合物三重态的磷光发射; 该器件的启动电压是5.0 V, 器件的最大亮度为1516 cd·m-2, 外量子效率为0.66%, 流明效率为0.26 lm·W-1, 是一种红色磷光材料.  相似文献   

20.
We investigated the effects of molecular ordering on the electro-optical characteristics of organic light-emitting diodes (OLEDs) with an emission layer (EML) of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). The EML was fabricated by a solution process which can make molecules ordered. The performance of the OLED devices with the molecular ordering method was compared to that obtained through fabrication by a conventional spin coating method. The turn-on voltage and the luminance of the conventional OLEDs were 5 V and 34.75 cd/m2, whereas those of the proposed OLEDs were 4.5 V and 120.3 cd/m2, respectively. The underlying mechanism of the higher efficiency with ordered molecules was observed by analyzing the properties of the EML layer using AFM, SE, XRD, and an LCR meter. We confirmed that the electrical properties of the organic thin film can be improved by controlling the molecular ordering of the EML, which plays an important role in the electrical characteristics of the OLED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号