首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HNO3 is extracted in significant quantities by uranyl nitrate solvates with different extractants: TBP (tributyl phosphate), TOPO (trioctyl phosphine oxide) and TDA (tetradecyl ammonium). The effect of diluent nature is not observed on extracting HNO3 and TBP saturated by uranium at equilibrium with its salt using the diluents (CCl4, C6H5Cl, C12H26, CHCl3) which are less polar than UO2(NO3)2(TBP)2. HNO3 occurs in organic phase as undissociated form and its state is similar to pure anhydrous HNO3. Solvates of TBP and TDA with uranyl nitrate dissolve HNO3 without displacement of uranium from organic phase.  相似文献   

2.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272 or HA), and synergistic extractants (S) such as tri-butylphosphate (TBP), tri-octylphosphine oxide (TOPO) or bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex301). The results showed that these metallic ions are extracted into kerosene as Th(OH)2(NO3)A·HA and UO2(NO3)A·HA with Cyanex272 alone. In the presence of neutral organophosphorus ligands TBP and TOPO, they are found to be extracted as Th(OH)2(NO3)A·HA·S and UO2(NO3)A·HA·S. On the other hand, Th(IV), U(VI) are extracted as Th(OH)2(NO3)A·HA·2S and UO2(NO3)A·HA·S in the presence of Cyanex301. The addition of neutral extractants such as TOPO and TBP to the extraction system enhanced the extraction efficiency of both elements while Cyanex301 as an acidic extractant has improved the selectivity between uranium and thorium. The effect of TOPO on the extraction was higher than other extractants. The equilibrium constants of above species have been estimated by non-linear regression method. The extraction amounts were determined and the results were compared with those of TBP. Also, it was found that the binding to the neutral ligands by the thorium–Cyanex272 complexes follows the neutral ligand basicity sequence.  相似文献   

3.
The phase diagram has been studied for the ternary liquid system (TLS) [Lu(NO3)3(TBP)3]-[UO2(NO3)2(TBP)2]-tetradecane at T = 298.15–333.15 K. There are fields of homogeneous and two-phase solutions in the system. One phase (phase I) is enriched in [Lu(NO3)3(TBP)3] and [UO2(NO3)2(TBP)2]; the other (phase II) is enriched in tetradecane. Critical compositions in the system depend on temperature. [UO2(NO3)2(TBP)2] tends to be distributed to phase I, despite the fact that the binary system [UO2(NO3)2(TBP)2[-tetradecane is a single phase at all temperatures studied.  相似文献   

4.
The phase diagram of the ternary liquid system [Th(NO3)4(TBP)2]-[UO2(NO3)2(TBP)2]-tetradecane (where TBP stands for tri-n-butyl phosphate) has been investigated at temperatures from 298.15 to 333.15 K. The ternary liquid system is characterized by a region of homogeneous solutions and a region of two-phase liquid systems (stratified systems). One phase is enriched with solvates [Th(NO3)4(TBP)3] and [UO2(NO3)2(TBP)2] (phase I), and the other is enriched with tetradecane (phase II). The temperature (T = 298.15–333.15 K) does not substantially affect the two-phase region. In the two-phase systems, the preferential distribution of [UO2(NO3)2(TBP)2] into phase I is observed in spite of the fact that the binary system [UO2(NO3)2(TBP)2]-tetradecane is a single phase at all temperatures investigated. The distribution of [UO2(NO3)2(TBP)2] into phase I leads to the redistribution of [Th(NO3)4(TBP)2] into phase II. At all temperatures investigated, the critical solution points of the ternary liquid system have compositions with close contents of the solvates [Th(NO3)4(TBP)2] and [UO2(NO3)2(TBP)2].  相似文献   

5.
The extraction of the pertechnetate anion has been investigated in the systems tributylphosphate (TBP)—solvent (carbon tetrachloride, n-heptane, chloroform)—metal salt (uranyl nitrate and chloride, thorium nitrate)—ammonium salt. In the absence of a metal, the solvates HTeO4. iTBP (i=4) are extracted, while in the presence of uranium and thorium, the distribution of technetium corresponds to the formation of the mixed complexes: UO2(NO3)(TeO4)·2TBP, UO2Cl(TcO4)·2TBP and Th(NO3)3 (TcO1)·2TBP. The effective constants of the reactions H++TcO 4 +i(TBP)org←(HTcO1·iTBP)org, and (MLn·2TBP)org+TcO 4 ←(MLn−1TcO4·2TBP)org+L were established in the above systems. The extraction of pertechnetate ion is more effective when it is coordinated to a cation solvated by TBP than the extraction in the form of pertechnetate acid solvated by TBP.  相似文献   

6.
The gas chromatographic technique of elution by characteristic point (ECP) has been used to determine partition data for HN3 at finite concentrations with tributyl phosphate (TBP) in hydrocarbon (hexadecane) solution in the presence of nitric acid and uranyl nitrate. The data are used to derive predictive equations for calculating gas-liquid and liquid-liquid partition coefficients for varying temperature and varying concentrations of TBP, HNO3, UO2(NO3)2, and HN3 in hydrocarbon solvents simulating nuclear fuel reprocessing flow sheets. The chromatographically derived partition data presented, being based on more precise measurements than were previously possible using conventional methods, allowed demonstration and quantification of the logarithmic temperature effect expected, but previously unobservable.  相似文献   

7.
The influence of the concentration of nitric, hydrochloric and phosphoric acids, petroleum sulfoxides (PSO), salting-out agent, kind of diluent and temperature on the distribution ratio of U(VI) and Th(IV) has been systematically studied. It is found that the extraction regularity of PSO is similar to that of TBP. The distribution ratio in phosphoric acid is lower, but it increases with the increase of hydrochloric acid concentration and reaches a high value. The U(VI) exhibits the maximum distribution ratio at 3–4 mol/l HNO3. The distribution ratio of U(VI) and Th(IV) increases rapidly in the presence of a salting out agent. The extracted compounds are determined to be UO2(NO3)22PSO and Th(NO3)42PSO. The extraction enthalpies of U(VI) and Th(IV) with PSO were also calculated.  相似文献   

8.
Microwave-assisted dissolution of ceramic uranium dioxide in tri-n-butyl phosphate (TBP)–HNO3 complex was investigated. The research on dissolution of ceramic uranium dioxide in TBP–HNO3 inclusion complex under microwave heating showed the efficiency of the use of this method. Nitric acid present in the inclusion complex participates both dissolution of UO2, and oxidation of U(IV)–U(VI), the resulting UO2(NO3)2 extracted with tri-n-butyl phosphate. Dissolution rate depends on both temperature of microwave dissolution process, and concentration of nitric acid present in the inclusion complex. The most intensive dissolution process is when the concentration of nitric acid ≥2 mol/L and the temperature of 120 °C. From the experimental data obtained by two kinetic models activation energies were calculated. At the average activation energy of UO2 dissolution in TBP–HNO3 complex equal 70 kJ/mol, and reaction order is close to one, i.e. the reaction takes place in an area close to kinetic.  相似文献   

9.
Bench-Scale studies on the partitioning and recovery of minoractinides from the actual and synthetic sulphate-bearing high level waste (SBHLW) solutions have been carried out by giving two contacts with 30% TBP to deplete uranium content followed by four contacts with 0.2M CMPO+1.2M TBP in dodecane. The acidity of the SBHLW solutions was about 0.3M. In the case of actual SBHLW, the final raffinate contained about 0.4% -activity originally present in the HLW, whereas with synthetic SBHLW the -activity was reduced to the background level.144Ce is extracted almost quantitative in the CMPO phase,106Ru about 12% and137Cs is practically not extracted at all. The extraction chromatographic column studies with synthetic SBHLW (aftertwo TBP contacts) has shown that large volume of waste solutions could be passed through the column without break-through of actinide metal ions. Using 0.04M HNO3>99% Am(III) and rare earths could be eluted/stripped. Similarly >99% Pu(IV) and U(VI) could be eluted.stripped using 0.01M oxalic acid and 0.25M sodium carbonate, respectively. In the presence of 0.16M SO 4 2– (in the SBHLW) the complex ions AmSO 4 + , UO2SO4, PuSO 4 2+ and Pu(SO4)2 were formed in the aqueous phase but the species extracted into the organic phase (CMPO+TBP) were only the nitrato complexes Am(NO3)3·3CMPO, UO2(NO3)2·2CMPO and Pu(NO3)4·2CMPO. A scheme for the recovery of minor actinides from SBHLW solution with two contacts of 30% TBP followed by either solvent extraction or extraction chromatographic techniques has been proposed.  相似文献   

10.
The separation of uranium and plutonium from oxalate supernatant, obtained after precipitating plutonium oxalate, containing ~10 g/l uranium and 30–100 mg/l plutonium in 3M HNO3 and 0.10–0.18M oxalic acid solution has been carried out. In one extraction step with 30% TBP in dodecane: ~92% of uranium and ~7% of Pu is extracted. The raffinate containing the remaining U and Pu is extracted with 0.2M CMPO+1.2 M TBP in dodecane and near complete extraction of both the metal ions is achieved. The metal ions are back extracted from organic phases using suitable stripping agents. The recovery of both the metal ions separately is >99%. The uranium species extracted into the TBP phase from the HNO3+oxalic acid medium was identified as UO2(NO3)2·2TBP.  相似文献   

11.
The role of nitrate ions in uranyl ions transport across TBP-kerosene oil supported liquid membranes (SLM) at varied concentrations of HNO3 and NaNO3 has been studied. It has been found that nitrate ions move faster compared to uranyl ions at the uranium feed solution concentrations studied. The nitrate to uranyl ions flux ratio vary from 355 to 2636 under different chemical conditions. At low uranium concentration the nitrate ions transport as HNO3 · TBP, in addition to as UO2(NO3)2 · 2TBP type complex species. The flux of nitrate ions is of the order of 12.10 · 10–3 mol · m–2 · s–1 compared to that of uranium ions (4.56 · 10–6 mol · m–2 · s–1). The permeability coefficient of the membrane for nitrate ions varies with chemical composition of the feed solution and is in the order of 2.5 · 10–10 m–2 · s–1. The data is useful to estimate the nitrate ions required to move a given amount of uranyl ions across such an SLM and in simple solvent extraction.  相似文献   

12.
The phase diagrams of binary liquid systems consisting of hexane and a tri-n-butyl phosphate (TBP) solvate of an Ln(III) (Ln = Nd, Gd, Y, Yb, Lu) or Th(IV) nitrate at various temperatures are considered. The diagrams show a field of homogeneous solutions and a two-phase field in which phase I is hexane-rich and phase II is rich in [Ln(NO3)3(TBP)3] or [Th(NO3)4(TBP)2]. The miscibility gap in the binary systems narrows with increasing temperature.  相似文献   

13.
Batchwise uptake of Am(III), Pm(III), Eu(III), U(VI) and Pu(IV) by dihexyl-N,N-diethylcarbamoylmethylphosphonate (CMP) adsorbed on chromosorb (CAC) at nitric acid concentrations between 0.01 to 6.0M has been studied. The difference between the uptake behavior of Pu(IV) as compared to other actinides and lanthanides is discussed. The Am(III) and U(VI) species taken up on CAC were found to be Am(NO3)3·3CMP and UO2(NO3)2·2CMP, respectively. The equilibrium constants for the formation of these species have been evaluated and compared with those of similar species formed in liquid-liquid extraction. Batchwise loading of Pm(III) on CAC from 3.0M HNO3 has also been studied.  相似文献   

14.
Tridentate ligand N,N,N′,N′-tetraoctyl-4-oxaheptanediamide(TOOHA) and other three analogous diamides have been prepared and characterized by using NMR spectra and element analysis. The extraction of UO2 2+ and Th4+ with the present extractants was investigated at 293 ± 1 K from nitric acid solutions. n-Octane was found to be the most suitable diluent in the present study compared with other diluents tested. Extraction distribution ratios (D) of U(VI) and Th(IV) have been studied as a function of aqueous concentrations of HNO3, extractant concentrations. The results indicated that U(VI) is mainly extracted as UO2(NO3)2·2TOOHA. In the case of Th4+ ion, the possible compositions of extracted species in organic phase were presumed to be Th(NO3)4·2TOOHA and Th(NO3)4·3TOOHA. In addition, the influence of concentration of sodium nitrate as salting-out agent on the distribution ratio of U(VI) and Th(IV) with TOOHA was also evaluated.  相似文献   

15.
The extraction of uranyl nitrate by the novel extractant N,N’-dimethyl-N,N’-dioctylsuccinylamide (DMDOSA) from aqueous nitric/nitrate solutions was investigated. The effects of concentration of HNO3 and DMDOSA on the U(VI) extraction distribution was studied. The extraction mechanism was established and the stoichiometry of the main extracted species was confirmed to be UO2(NO3)2·2DMDOSA. The value of ΔH of the extraction is −23.9±1.7 kJ·mol−1. A IR spectral study of the U(VI) extracted species was also made.  相似文献   

16.
Extraction of U(VI) from HNO3, HCl and HClO4 media using cyanex-272 (bis[2,4,4 trimethyl pentyl] phosphinic acid)/n-dodecane has been carried out. In the case of HNO3 and HClO4 media, the distribution ratio (D) value first decreases and then increases, whereas from HCl medium it first decreases and then remains constant with increase in H+ ion concentration. At lower acidities, U(VI) was extracted as UO2(HA2)2 by an ion exchange mechanism, whereas at higher acidities as UO2(NO3)2 .2(H2A2) following a solvation mechanism. The D for U(VI) by cyanex-272, PC-88A and DEHPA at low acidities follows the order cyanex-272 > PC-88A > DEHPA. Also, cyanex-272 was found to extract U(VI) more efficiently than TBP at 2M HNO3. The effect of diluents on the extraction of U(VI) by cyanex-272 followed the order cyclohexane > n-dodecane > CCl4 > benzene. The loading of U(VI) into cyanex-272/n-dodecane from 2M HNO3 has shown that at saturation point, cyanex-272 was 78% loaded. No third phase was observed at the saturation level. The stripping of U(VI) from the loaded organic phase was not possible with water, it was poor with acetic acid and sodium acetate but quantitative with oxalic acid, ammonium carbonate and sodium carbonate.  相似文献   

17.
N-dodecanoylpyrrolidine (DOPOD) was synthesized and used for the extraction of nitric acid and uranyl(VI) ions from nitric media in toluene. The effects of nitric acid concentration, extractant concentration, temperature, salting-out agent (LiNO3) have been studied. The main adduct of DOPOD and HNO3 is HNO3·DOPOD. The complex formation of uranyl(VI) ion, nitrate ion and DOPOD (UO2(NO3)2·2DOPOD) as extracted species are further confirmed by IR spectra and the values of thermodynamic parameters have also been calculated.  相似文献   

18.
The synergistic solvent extraction of Eu(III) and some other rare earth elements from nitrate solutions (HNO3+LiNO3) by a mixture of (TBP+D2EHPA) in n-hexane and cyclohexane has been investigated at 22 °C. Antagonism found in europium extraction from 0.1M HNO3 transforms into a synergistic effect. The synergistic effects existing for all investigated metals in extraction from 0.1M HNO3+3M LiNO3 were caused by formation of mixed complexes of the type Ln(D2EHPA)2nH2n–3+1(NO3)1TBPm, where 1=1 or 2. The selectivity of the extraction in a synergistic system is lower for the La–Yb pair than in the case of D2EHPA extraction under the same conditions. On the other hand, the application of the synergistic mixture is more suitable for Eu–Ho separation. Thus the synergistic effect can be used for the separation or refining of some lanthanides.  相似文献   

19.
Phase diagram of a ternary liquid system [Th(NO3)4(TBP)2]-[UO2(NO3)2(TBP)2]-Exide 100 solvent was studied at 298.15–333.15 K. Original Russian Text ? A.K. Pyartman, V.A. Keskinov, V.V. Lishchuk, Ya.A. Reshetko, V.E. Skobochkin, 2007, published in Zhurnal Prikladnoi Khimii, 2007, Vol. 80, No. 8, pp. 1243–1245.  相似文献   

20.
Recently authors demonstrated direct dissolution of g-level PHWR UO2 fuel pellet fragments and in situ extraction by TBP-HNO3 and TiAP-HNO3 solutions at atmospheric pressures. Extending the work, similar studies were performed on intact unirradiated PHWR UO2 fuel pellets (~15 g U) with varying compositions of organic solvate of tri-n-butyl phosphate (TBP). It was observed that extent of dissolution was a strong function of organic solution composition TBP·(HNO3) x (H2O) y . Complete dissolution of intact UO2 pellet in a reasonable time was observed only in case of a particular solvate composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号