首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the use of intermolecular multiple-quantum coherence to probe structural anisotropy in trabecular bone. Despite the low volume fraction of bone, the bone-water interface produces internal magnetic field gradients which modulate the dipolar field, depending on sample orientation, choice of dipolar correlation length, correlation gradient direction, and evolution time. For this system, the probing of internal magnetic field gradients in the liquid phase permits indirect measurements of the solid phase dipolar field. Our results suggest that measurements of volume-averaged signal intensity as a function of gradient strength and three orthogonal directions could be used to non-invasively measure the orientation of structures inside a sample or their degree of anisotropy. The system is modeled as having two phases, solid and liquid (bone and water), which differ in their magnetization density and magnetic susceptibility. A simple calculation using a priori knowledge of the material geometry and distribution of internal magnetic fields verifies the experimental measurements as a function of gradient strength, direction, and sample orientation.  相似文献   

2.
Probes capable of generating short high intensity pulsed magnetic field gradients are commonly used in diffusion studies of systems with very short T(2). Traditional methods of calibrating magnetic field gradients present unique challenges at ultrahigh field strengths and are often inapplicable. Currently the most accurate method of determining magnetic gradient strength is to use the known diffusion coefficient of a standard sample and determine gradient strength from the echo attenuation plot of a diffusion experiment, however, there are problems with finding suitable standards for high intensity gradients. Here, we show that molecules containing at least two receptive nuclei (i.e. one with high and one with low gyromagnetic ratios) are excellent systems for calibrating high intensity gradients.  相似文献   

3.
高翱  王强  王春江  刘铁  张超  赫冀成 《物理学报》2008,57(2):767-771
研究了Mn-898wt%Sb合金在无磁场以及磁场为B=88 T、不同强度的磁场梯度作用下的凝固组织变化,并分析了上述不同强磁场条件对合金凝固组织影响的作用机理.研究表明,在较大梯度磁场作用时,试样中出现了初生MnSb相与Sb相以及共晶组织共存的现象,而且初生MnSb相与Sb相产生了明显的分层现象.此外,磁场梯度作用下初生MnSb相和Sb相的含量随着磁场梯度的增大而增加.论文对初生MnSb相和Sb相的分离机理进行了探讨,发现在梯度磁场作用下,熔融金属中不同磁化率的合金组元团簇受力不同,造成 关键词: 强磁场 Mn-Sb合金 磁化力 梯度功能材料  相似文献   

4.
Solving the problem of concomitant gradients in ultra-low-field MRI   总被引:1,自引:0,他引:1  
In ultra-low-field magnetic resonance imaging (ULF MRI), spin precession is detected typically in magnetic fields of the order of 10-100 μT. As in conventional high-field MRI, the spatial origin of the signals can be encoded by superposing gradient fields on a homogeneous main field. However, because the main field is weak, gradient field amplitudes become comparable to it. In this case, the concomitant gradients forced by Maxwell's equations cause the assumption of linearly varying field gradients to fail. Thus, image reconstruction with Fourier transformation would produce severe image artifacts. We propose a direct linear inversion (DLI) method to reconstruct images without limiting assumptions about the gradient fields. We compare the quality of the images obtained using the proposed reconstruction method and the Fourier reconstruction. With simulations, we show how the reconstruction errors of the methods depend on the strengths of the concomitant gradients. The proposed approach produces nearly distortion-free images even when the main field reaches zero.  相似文献   

5.
Magnetic resonance imaging (MRI) suffers from artifacts caused by concomitant gradients when the product of the magnetic field gradient and the dimension of the sample becomes comparable to the static magnetic field. To investigate and correct for these artifacts at very low magnetic fields, we have acquired MR images of a 165-mm phantom in a 66-microT field using gradients up to 350 microT/m. We prepolarize the protons in a field of about 100 mT, apply a spin-echo pulse sequence, and detect the precessing spins using a superconducting gradiometer coupled to a superconducting quantum interference device (SQUID). Distortion and blurring are readily apparent at the edges of the images; by comparing the experimental images to computer simulations, we show that concomitant gradients cause these artifacts. We develop a non-perturbative, post-acquisition phase correction algorithm that eliminates the effects of concomitant gradients in both the simulated and the experimental images. This algorithm assumes that the switching time of the phase-encoding gradient is long compared to the spin precession period. In a second technique, we demonstrate that raising the precession field during phase encoding can also eliminate blurring caused by concomitant phase-encoding gradients; this technique enables one to correct concomitant gradient artifacts even when the detector has a restricted bandwidth that sets an upper limit on the precession frequency. In particular, the combination of phase correction and precession field cycling should allow one to add MRI capabilities to existing 300-channel SQUID systems used to detect neuronal currents in the brain because frequency encoding could be performed within the 1-2 kHz bandwidth of the readout system.  相似文献   

6.
Internal magnetic field gradients in water saturated glass bead packs were studied by numerical simulations and a constant time spin echo (CTSE) experiment. The CTSE is comprised of two spin echo refocusing periods where each of the two evolution periods, tau1 and tau2, is varied so that the total evolution, 2(tau1 + tau2), is held constant. The experiment is similar to that introduced by Norwood and Quilter and allows the effects of dephasing due to diffusion in a magnetic field gradient to be separated from other relaxation mechanisms. In our experiments, the magnetic susceptibility difference between the pore fluid and glass beads creates the internal field gradient. CTSE measurements were performed at 7 T (300 MHz 1H) for water saturated in 50 microm diameter glass bead pack. We find that the internal gradients in the center of the pore bodies, where free diffusion applies, is in the range of 10 to 100 G/cm. This fluid volume accounts for < or =10% of the total pore volume. From direct numerical simulations of the internal magnetic field based on a first principles calculation, we find that the major fraction, >90%, of the pore volume has internal gradients of order 500 to 5,000 G/cm. Signals from water in these large gradients is not observed in our CTSE measurements.  相似文献   

7.
When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.  相似文献   

8.
MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a homogeneous static magnetic field much higher than the fields generated across the field of view by the spatially encoding field gradients. Without such a high field, the concomitant components of the field gradient dictated by Maxwell’s equations lead to severe distortions that make imaging impossible with conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with a fundamentally different methodology in which the applied static field approaches zero. Our technique involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth’s field without cancellation coils or shielding. Other potential applications include quantum information processing and fundamental studies of long-range ferromagnetic interactions.  相似文献   

9.
Diffusion measurements in heterogeneous media may contain a significant source of error, the influence of the coupling between the applied and internal magnetic field gradients on the attenuation of the NMR signal. The application of bipolar magnetic field gradients has been introduced to suppress this error. The basic assumption for the successful removal of the coupling is that the diffusing molecules are experiencing a constant internal gradient during the experiment. We will provide theoretical and experimental evidence that the application of bipolar magnetic field gradients may fail to suppress the effect from all the cross terms between internal and applied gradients effectively at long observation times. It will be shown experimentally that a successful suppression of the cross terms is strongly dependent on the observation time, and on the tau value in the bipolar pulsed field gradient stimulated echo experiment. Copyright 2000 Academic Press.  相似文献   

10.
Two different concepts of gradient current power supplies are introduced, which are suitable for the generation of ultra-high intensity pulsed magnetic field gradients of alternating polarity. The first system consists of a directly binary coded current source (DBCCS). It yields current pulses of up to ±120 A and a maximum voltage across the gradient coil of ±400 V. The second system consists of two TECHRON 8606 power supplies in push–pull configuration (PSPPC). It yields current pulses of up to ±100 A and a maximum voltage across the gradient coil of ±300 V. In combination with actively shielded anti-Helmholtz gradient coils, both systems are used routinely in NMR diffusion studies with unipolar pulsed field gradients of up to 35 T/m. Until now, alternating pulsed field gradient experiments were successfully performed with gradient intensities of up to ±25 T/m (DBCCS) and ±35 T/m (PSPPC), respectively. Based on the observation of the NMR spin echo in the presence of a small read gradient, procedures to test the stability and the matching of such ultra-high pulsed field gradient intensities as well as an automated routine for the compensation of possible mismatches are introduced. The results of these procedures are reported for the PSPPC system.  相似文献   

11.
The Panagrellus redivivus bioassay, an established monitor of adverse toxic effects of different environments, has been used to study the biological effects of exposure to static and time-varying uniform and gradient magnetic fields, and to time-varying magnetic field gradients superimposed on a static uniform magnetic field of 2.35 Tesla. Temporally stationary magnetic fields have no effect on the fitness of the test animals. Time-varying magnetic fields cause some inhibition of growth and maturation in the test populations. The combination of pulsed magnetic field gradients in a static uniform magnetic field also has a small detrimental effect on the fitness of the test animals.  相似文献   

12.
In magnetic resonance imaging (MRI), T(2)(*)-weighted contrast is significantly enhanced by extremely high magnetic field strength, offering broad potential applications. However, the T(2)(*)-weighted image contrast distortion and signal loss artifact arising from discontinuities of magnetic susceptibility within and around the sample are also increased, limiting utilization of high field systems for T(2)(*)-weighted contrast applications. Due to the B(0) dependence of the contrast distortions and signal losses, and the heterogeneity of magnetic susceptibility in biological samples, magnetic susceptibility artifacts worsen dramatically for in vivo microimaging at higher fields. Practical applications of T(2)(*)-sensitive techniques enhanced by higher magnetic fields are therefore challenged. This report shows that magnetic susceptibility artifacts dominate T(2)(*)-weighted image contrast at 14 T, and demonstrates that the GESEPI (gradient echo slice excitation profile imaging) technique effectively reduces or eliminates these artifacts at long TE in the highest field (14 T) currently available for (1)H imaging.  相似文献   

13.
With a proper timing of pi pulses, it is possible to reduce the effect of the static internal magnetic field gradient on the measurement of diffusion with the pulsed gradient spin echo (PGSE). A pulse sequence that in the first order eliminates the effect of weak internal static gradients in a standard PGSE experiment is introduced. The method should be applied in the cases, where strong and short magnetic gradient pulses are used to investigate the motion of liquid in heterogeneous samples with large susceptibility differences such as porous media.  相似文献   

14.
Clinical proton NMR imaging uses magnetic field strengths in the range 0.1 to 0.5 T. In addition to the large static magnetic field, patients are exposed to magnetic field gradients during imaging and under extreme conditions, such as power failure or quenching, the field may collapse precipitously. A potential source of hazard to patients under these conditions is the induction of thoracic currents which may trigger ventricular fibrillation. In the present experiments, a 0.16 T resistive magnet with a time constant of 60 ms, powered by a programmable power supply, was used to examine any possible effects of static and changing magnetic field on the ECG and arterial blood pressure of anesthetized rats and guinea pigs. Animals were exposed to the following field conditions: static fields of 0.16 T; sine, triangular, and square wave modulated fields from 0.1 to 2 Hz; rapid field switches in excess of 2.0 T/s for 25 ms timed to occur at different stages of the cardiac cycle, including the vulnerable period during ventricular repolarization; and AC fields of 50 Hz. No change was observed in the blood pressure, heart rate, or ECG under any of the field conditions examined.  相似文献   

15.
Electrodeposition in superimposed magnetic gradient fields is a new and promising method of structuring metal deposits while avoiding masking techniques. The magnetic properties of the ions involved, their concentrations, the electrochemical deposition parameters, and the amplitude of the applied magnetic gradient field determine the structure generated. This structure can be thicker in regions of high magnetic field gradients. It can also be free-standing or inversely structured. The complex mechanism of structured electrodeposition of metallic layers in superimposed magnetic gradient fields was studied by different experimental methods, by analytical methods and by numerical simulation and will be discussed comprehensively.  相似文献   

16.
Kaolin clay samples were mixed with various amounts of Fe2O3 powder. The influence of this magnetic impurity on NMR relaxation and diffusion measurements on the water in this porous material was investigated. The NMR relaxation measurements showed a nearly mono-exponential decay, leading to the conclusion that the pore size distribution of the clay samples is either narrow and/or that the pores are interconnected very well. Both the longitudinal and the transverse relaxation rate depend linearly on the concentration of the Fe2O3 impurity. The NMR diffusion measurements revealed that the Fe2O3 causes internal magnetic field gradients that largely exceed the maximum external gradient that could be applied by our NMR apparatus (0.3 T/m). Additional SQUID measurements yielded the magnetization and magnetic susceptibility of the samples at the magnetic field strength used in the NMR measurements (0.8 T). A theoretical estimate of the internal magnetic field gradients leads to the conclusion that the water in the porous clay samples cannot be described by the commonly observed motional averaging regime. Probably an intermediate or a localization regime is induced by the large internal gradients, which are estimated to be on the order of 1 to 10 T/m in the pore volume and may exceed 1000 T/m at the pore surface.  相似文献   

17.
The Abelian Born-Infeld classical non-linear Electrodynamic has been used to investigate the electric and magnetostatic fields generated by a point-like electric charge at rest in an inertial frame. The results show a rich internal structure for the charge. Analytical solutions have also been found. Such fields configurations have been interpreted in terms of vacuum polarization and magnetic-like charges produced by the very high strengths of the electric field considered. Apparently non-linearity is responsible for the emergence of an anomalous magnetostatic field suggesting a possible connection to that created by a magnetic dipole composed of two magnetic charges with opposite signs. Consistently in situations where the Born-Infeld field strength parameter is free to become infinite, Maxwell’s regime takes over, the magnetic sector vanishes and the electric field assumes a Coulomb behavior with no trace of a magnetic component. The connection to other monopole solutions, like Dirac’s and ’tHooft’s Poliakov’s types are also discussed. Finally, some speculative remarks are presented in an attempt to explain such fields.  相似文献   

18.
Single point measurements of magnetic field gradient waveform   总被引:1,自引:0,他引:1  
Pulsed magnetic field gradients are fundamental to spatial encoding and diffusion weighting in magnetic resonance. The ideal pulsed magnetic field gradient should have negligible rise and fall times, however, there are physical limits to how fast the magnetic field gradient may change with time. Finite gradient switching times, and transient, secondary, induced magnetic field gradients (eddy currents) alter the ideal gradient waveform and may introduce a variety of undesirable image artifacts. We have developed a new method to measure the complete magnetic field gradient waveform. The measurement employs a heavily doped test sample with short MR relaxation times (T(1), T(2), and T(2)(*)<100 micros) and a series of closely spaced broadband radiofrequency excitations, combined with single point data acquisition. This technique, a measure of evolving signal phase, directly determines the magnetic field gradient waveform experienced by the test sample. The measurement is sensitive to low level transient magnetic fields produced by eddy currents and other short and long time constant non-ideal gradient waveform behaviors. Data analysis is particularly facile permitting a very ready experimental check of gradient performance.  相似文献   

19.
We report on experiments to characterize internal magnetic field gradients that are caused by magnetic susceptibility differences between the solid phase and the fluids filling the pore space. Our measurements focus on low-field relaxometry of brine and oil in sandstones from various reservoirs around the world. Our results show the need to understand the dependence of internal field gradients on diffusion length, pore size- and fluid distribution in order to predict the impact of internal gradients on the interpretation of NMR experiments.  相似文献   

20.
Pulsed gradient spin echo (PGSE) experiments can be used to measure the probability distribution of molecular displacements. In homogeneous samples this reports on the molecular diffusion coefficient, and in heterogeneous samples, such as porous media and biological tissue, such measurements provide information about the sample's morphology. In heterogeneous samples however background gradients are also present and prevent an accurate measurement of molecular displacements. The interference of time independent background gradients with the applied magnetic field gradients can be removed through the use of bipolar gradient pulses. However, when the background gradients are spatially non-uniform molecular diffusion introduces a temporal modulation of the background gradients. This defeats simple bipolar gradient suppression of background gradients in diffusion related measurements. Here we introduce a new method that requires the background gradients to be constant over coding intervals only. Since the coding intervals are typically at least an order of magnitude shorter than the storage time, this new method succeeds in suppressing cross-terms for a much wider range of heterogeneous samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号