首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Morita–Baylis–Hillman (MBH) reaction catalyzed by thiourea was monitored by ESI‐MS(/MS) and key intermediates were intercepted and characterized. These intermediates suggest that thiourea acts as an organocatalyst in all steps of the MBH reaction cycle, including the rate‐limiting proton‐transfer step. DFT calculations, performed for a model MBH reaction between formaldehyde and acrolein with trimethylamine as base and in the presence or the absence of thiourea, suggest that thiourea accelerates MBH reactions by decreasing the transition‐state (TS) energies through bidentate hydrogen bonding throughout the whole catalytic cycle. In the rate‐limiting proton‐transfer step, the thiourea acts not as a proton shuttle, but as a Brønsted acid stabilizing the basic oxygen center that is formed in the TS.  相似文献   

2.
An efficient protocol for the evaluation of catalysts for the asymmetric Morita–Baylis–Hillman (MBH) reaction was developed. By mass spectrometric back‐reaction screening of quasi‐enantiomeric MBH products, an efficient bifunctional phosphine catalyst was identified that outperforms literature‐known catalysts in the MBH reaction of methyl acrylate with aldehydes. The close match between the selectivities measured for the forward and back reaction and kinetic measurements provided strong evidence that the aldol step and not the subsequent proton transfer is rate‐ and enantioselectivity‐determining.  相似文献   

3.
The thermodynamic properties and reaction mechanism of the Morita-Baylis-Hillman (MBH) reaction have been investigated through experimental and computational techniques. The impossibility to accelerate this synthetically valuable transformation by increasing the reaction temperature has been rationalized by variable-temperature experiments and MP2 theoretical calculations of the reaction thermodynamics. An increase in temperature results in a switching of the equilibrium to the reactants occurring at even moderate temperature levels. The complex reaction mechanism for the MBH reaction has been investigated through an in-depth analysis of the suggested alternative pathways, using the M06-2X computational method. The results provided by this theoretical approach are in agreement with all the experimental/kinetic evidence such as reaction order, acceleration by protic species (methanol, phenol), and autocatalysis. In particular, the existing controversy about the character of the key proton transfer in the MBH reaction (Aggarwal versus McQuade pathways) has been resolved. Depending on the specific reaction conditions both suggested pathways are competing mechanisms, and depending on the amount of protic species and the reaction progress (early or late stage) either of the two mechanisms will be favored.  相似文献   

4.
Roy D  Sunoj RB 《Organic letters》2007,9(23):4873-4876
The first ab initio and DFT studies on the mechanism of the MBH reaction show that the rate-limiting step involves an intramolecular proton transfer in the zwitterionic intermediate generated by the addition of enolate to electrophile. The activation barrier for the C-C bond-formation is found to be 20.2 kcal/mol lower than the proton-transfer step for the MBH reaction between methyl vinyl ketone and benzaldehyde catalyzed by DABCO.  相似文献   

5.
Benefited from the rapid development of MBH reaction, the reaction of MBH adducts have been established as the most synthetically useful transformations. However, compared with the well-established allylic alkylations and (3+2)-annulations, the (1+4)-annulations of MBH adducts have not developed rapidly until recently. As a helpful complement to the (3+2)-annulations of MBH adducts, the (1+4)-annulations of MBH adducts opens a robust access to structurally diverse five-membered carbo- and heterocycles. This paper summarizes recent advances in organocatalytic (1+4)-annulations using MBH adducts as 1 C-synthons for the construction of functionalized five-membered carbo- and heterocycles.  相似文献   

6.
The molecular origin of the experimentally observed pronounced difference in the rates of Morita–Baylis–Hillman (MBH) reaction in heterocyclic aldehydes, depending on the position of the formyl group, is investigated herein by using DFT‐based mechanistic studies and free energy computations. These calculations are based on the 1,4‐diazobicyclo[2.2.2]octane (DABCO)‐catalyzed MBH reaction of methyl acrylate with substituted 4‐ and 5‐isoxazolecarbaldehyde, which are slow‐ and fast‐reacting substrates, respectively. As a result of this study, we propose that by tailoring ring substitutions the reactivity of the formyl group for MBH reactions may be enhanced in slow‐reacting heterocyclic aldehydes. This proposition is demonstrated by enhancing the rate of the MBH reaction in 4‐isoxazolecarbaldehyde more than 104‐fold by installing an ester substitution at the C‐3 position. Similarly, the reactivity of the formyl group towards the MBH reaction in substituted 3‐pyrazolecarbaldehyde and pyridinecarbaldehyde is shown to be increased several‐fold by a halo substitution. We also confirm that the reasons for different reactivities of heterocyclic aldehydes and the proposed scheme for improving the reaction rates remains valid for all the three mechanisms proposed for the MBH reaction, namely, Hill–Isaacs, McQuade, and Aggarwal.  相似文献   

7.
Here, we describe our studies on the thiourea-catalyzed Morita-Baylis-Hillman (MBH) reaction. Chemoselective activation of carbonyl compounds via hydrogen bonding to thiourea as a catalyst is the key to drastic rate acceleration of this reaction. The application of chiral bis-thiourea-type organocatalysts, which can form a chiral double hydrogen-bonding network, is effective for enantioselective MBH reaction. A cooperative system of bis-thiourea compounds, synthesized from 1,2-diaminocyclohexane, and a Lewis base effectively promotes the MBH reaction at lower temperature, affording the MBH adducts in 33-95% yield with 44-90% ee. A plausible transition state model of the enantioselective MBH reaction is presented.  相似文献   

8.
Accurate calculations are presented on the mechanism of the MBH reaction, focusing on the reaction between methyl acrylate and benzaldehyde, catalyzed by a tertiary amine. We address the mechanism under protic solvent-free conditions, but also consider how the mechanism and rate-limiting step change in the presence of alcohols. We have carefully calibrated the DFT method used in the calculations by carrying out high-level G3MP2 calculations on a model system. All of our calculations also treat the effect of solvent, described as a dielectric continuum. In the absence of protic solvent, we predict that deprotonation of the alpha-position is the rate-determining step and occurs through a cyclic transition state, with proton transfer to a hemiacetal alkoxide formed by addition of a second equivalent of aldehyde to the intermediate alkoxide. As first suggested by McQuade, this mechanism explains the observed second-order kinetics with respect to aldehyde concentration in the absence of protic solvent. In contrast, in the presence of methanol, we find a slightly lower energy pathway, in which the alcohol serves as a shuttle to transfer the proton from carbon to oxygen. Overall, the barrier to reaction for the latter mechanism is of 24.6 kcal/mol with respect to reactants at the B3LYP level of theory. The relative energy for the addition transition state of the amine-acrylate betaine adduct to the aldehyde is much lower, at 16.0 kcal/mol relative to reactants, so C-C bond formation should not be rate-limiting, except perhaps for some aliphatic aldehydes or imines. We discuss the implications of this mechanism for the design of asymmetric versions of the MBH reaction, given the overwhelming importance of the proton-transfer step.  相似文献   

9.
Chiral BINOL-derived Br?nsted acids catalyze the enantioselective asymmetric Morita-Baylis-Hillman (MBH) reaction of cyclohexenone with aldehydes. The asymmetric MBH reaction requires 2-20 mol % of the chiral Br?nsted acid 2e or 2f and triethylphosphine as the nucleophilic promoter. The reaction products are obtained in good yields (39-88%) and high enantioselectivities (67-96% ee). The Br?nsted-acid-catalyzed reaction is the first example of a highly enantioselective asymmetric MBH reaction of cyclohexenone with aldehydes.  相似文献   

10.
A series of bifunctional phosphine-thiourea organic catalysts based on natural amino acid scaffolds were designed and prepared. L-threonine-derived bifunctional phosphine catalysts were found to be very efficient in promoting asymmetric Morita-Baylis-Hillman (MBH) reaction of acrylates with aromatic aldehydes, affording the desired MBH adducts with up to 90% ee. To gain mechanistic insights into the reaction, the effects of adding various additives on the MBH reaction were investigated. We propose that the hydrogen bonding interactions between the thiourea moiety of the catalyst and the enolate intermediate are crucial for the stereochemical outcome of the reaction. The method described in this report may provide a practical solution to the enantioselective MBH reaction of simple acrylates.  相似文献   

11.
We report a highly enantioselective Morita-Baylis-Hillman (MBH) reaction of isatins and acrolein to provide enantiomerically enriched 3-substituted 3-hydroxyoxindoles, which could serve as valuable synthetic building blocks. This is also the first time that a ketone has been used as the electrophile and acrolein as the nucleophile in a highly enantioselective catalytic asymmetric MBH reaction. Hatakeyama's catalyst, β-isocupreidine (1), turned out to be a powerful catalyst for this transformation.  相似文献   

12.
A simple protocol for the preparation of functionalized allylic amines under mild, transition-metal-free conditions from the reaction of Morita–Baylis–Hillman (MBH) bromides with amines is described herein. The treatment of the MBH bromides with various amines in the presence of NaI and Et3N in aqueous acetone solution and at room temperature affords the corresponding functionalized allyl amines in moderate to good yields (45–87%). The reaction is rapid and carried out at room temperature.  相似文献   

13.
An intermolecular Morita-Baylis-Hillman (MBH) reaction using dicobalthexacarbonyl complexed acetylenic acetals as the electrophile is reported. Employing BF3-OEt2 as the Lewis acid with a sulfide as the Lewis base MBH adducts were obtained.  相似文献   

14.
Chen GY  Zhong F  Lu Y 《Organic letters》2011,13(22):6070-6073
A highly enantioselective and regioselective substitution reaction of the Morita-Baylis-Hillman (MBH) carbonates with nitroalkanes catalyzed by a quinidine-derived tertiary amine-thiourea catalyst has been developed. The described method, which is different from most organocatalytic allylic substitutions of the MBH adducts to date, represents a novel approach to regioselectively functionalize the MBH adducts.  相似文献   

15.
An intermediate phosphonium salt has never been isolated from the Morita-Baylis-Hillman (MBH) reaction. Due to the weakly basic counterion produced in the MBH alkylation and allylation reactions, the reaction can be stopped after electrophilic attack on the zwitterionic enolate and an intermediate isolated. Upon analysis of the crystal structure, a trans geometry is observed, suggesting that there is no electrostatic interaction between phosphorus and oxygen in the zwitterionic enolate that undergoes alkylation, thus giving new mechanistic insight into the MBH reaction.  相似文献   

16.
The Morita–Baylis–Hillman (MBH) reaction is one of the most useful and efficient protocols for constructing new carbon–carbon bonds between an activated olefin and electrophiles in the presence of a tertiary amine/phosphine. Herein, we present the use of MBH alcohols, which are obtained from the reaction of nitrostyrenes with aldehydes, as well as acetates and amines derived thereof in several organocatalytic transformations. Densely functionalised MBH adducts can also be used to synthesise substituted heteroaromatic compounds, such as furan, pyrrole, pyrazole and imidazole derivatives.  相似文献   

17.
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways.

A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.  相似文献   

18.
The development of asymmetric Morita-Baylis-Hillman (MBH) reactions has evolved dramatically over the past few years, parallel to the emerging concept of bifunctional organocatalysis. Whereas organocatalysis is starting to compete with metal-based catalysis in several important organic transformations, the MBH reaction belongs to a group of prototypical reactions in which organocatalysts already display superiority over their metal-based counterparts. This Minireview summarizes recent mechanistic insights and advances in the design and synthesis of small organic molecules for enantioselective MBH and aza-MBH reactions.  相似文献   

19.
The base-catalyzed reaction between isatins and N-Boc-3-pyrrolin-2-one yields Morita–Baylis–Hillman (MBH) adducts instead of the expected aldol products in good to high yields (up to 97%). Various organic and inorganic bases are efficient catalysts for this reaction. Our study excluded the Morita–Baylis–Hillman mechanism for the formation of the MBH-type products. The MBH products are most likely formed as a result of the subsequent isomerization of the original aldol products between isatins and N-Boc-3-pyrrolin-2-one.  相似文献   

20.
The Morita-Baylis-Hillman (MBH)-type reaction of α,β unsaturated δ-lactone with various aldehydes has been achieved without the direct use of a Lewis base. The new MBH process can be conveniently carried out by the slow addition of the diethylaluminum iodide into the solution of lactone and aldehyde in dichloromethane at 0°C. Modest to good yields were obtained (50-65%) for eight examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号