首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared spectra of dimethylhydrogen phosphonate (DMHP) isolated in nitrogen, argon and krypton matrices using an effusive source at 298 and 373 K have been recorded. Experiments were also performed using a supersonic jet source to look for conformational cooling in the expansion process. As a result of these experiments, infrared spectral characteristics of the ground and higher energy conformers of the DMHP have been identified for the first time. The structures of DMHP were optimized at the hybrid B3LYP and Hartree fock (HF) levels of theory using the 6-31++G** basis sets. Computationally, four minima were obtained corresponding to DMHP conformers with G (+/-)G (-/+), G (-)G (-), TG (+) and TG (-) structures in the order of increasing energy. Frequency calculations were done to confirm that the structures were indeed minima on the potential energy surface (PES). The computed frequencies corroborated well with the experimental matrix isolation infrared frequencies leading to definite assignments of the infrared features of DMHP, for the G (+/-)G (-/+) and TG (+) conformers. At B3LYP/6-31++G** level, the energy difference between the G (+/-)G (-/+) and G (-)G (-) conformer was 1.53 kcal/mol, and that between G (+/-)G (-/+) and TG (+), G (+/-)G (-/+) and TG (-) were 1.65 and 1.95 kcal/mol. Transition-state calculations were also carried out at B3LYP/6-31++G** level connecting the G (+/-)G (-/+) to G (-)G (-), TG (+) and TG (-) conformers. Computations indicated that the conformer interconversion between G (-)G (-) --> G (+/-)G (-/+) is barrierless, whereas the barriers for TG (+) --> G (+/-)G (-/+) and TG (-) --> G (+/-)G (-/+) are 1.47 and 0.88 kcal/mol, respectively.  相似文献   

2.
The conformations of trimethyl phosphite (TMPhite) were studied using matrix isolation infrared spectroscopy. TMPhite was trapped in a nitrogen matrix using an effusive source maintained at two different temperatures (298 and 410 K) and a supersonic jet source. The experimental studies were supported by ab initio computations performed at the B3LYP/6-31++G** level. Computations identified four minima for TMPhite, corresponding to conformers with C(1)(TG(±)G(±)), C(s)(TG(+)G(-)), C(1)(G(±)TT), and C(3)(G(±)G(±)G(±)) structures, given in order of increasing energy. Computations of the transition state structures connecting the C(s)(TG(+)G(-)) and C(1)(G(±)TT) conformers to the global minimum C(1)(TG(±)G(±)) structure were also carried out. The barriers for the interconversion of C(s)(TG(+)G(-)) and C(1)(G(±)TT) to the ground state C(1)(TG(±)G(±)) conformer were 0.2 and 0.6 kcal/mol, respectively. Comparison of conformational preferences of TMPhite with the related carbon compound, trimethoxymethane, and the organic phosphate, trimethyl phosphate, was also made using natural bond orbital analysis.  相似文献   

3.
Conformations of trimethoxymethylsilane were studied using matrix isolation infrared spectroscopy and ab initio computations. Trimethoxymethylsilane was trapped in both argon and nitrogen matrixes using heated nozzle effusive sources and a supersonic jet source, in an effort to alter the conformational population in the matrix. Ab initio calculations were carried out at the HF and B3LYP level using 6-31++G basis set to support our experimental observations. The frequencies computed at the B3LYP level was found to fit well with our experimental data. A conformer with a C1(g(+/-)g(+/-)t) structure was predicted by our computations to be the ground state conformer.  相似文献   

4.
Conformations of dimethoxydimethylsilane (DMDMS) were studied using matrix isolation infrared spectroscopy, by trapping the silane in argon and nitrogen matrixes. The matrix was deposited using both an effusive and a supersonic jet source. The effusive source was maintained at two different temperatures, viz. 298 and 433 K, during deposition to alter the conformational population of the silane. The experimental results were supported by computations performed at both the HF and B3LYP levels, using 6-31++G** basis set. Vibrational frequency calculations were carried out to assign the experimental features and also to ensure that the computed structures did indeed correspond to minima. A conformer with a G+/-G-/+ structure was found to be the ground state, while G+/-T and G+/-G+/- structures were the next higher energy conformers with energies of 1.32 and 1.48 kcal/mol, respectively. Natural bond orbital analysis was carried out at both HF/6-31++G** and B3LYP/6-31++G** level which indicated that the charge-transfer hyperconjugative interactions largely determine the conformational preferences in this molecule. This interaction appears to be smaller in DMDMS than in the corresponding carbon analogue, dimethoxypropane (DMP).  相似文献   

5.
Conformations of dimethoxymethane (DMM) were studied using matrix isolation infrared spectroscopy. DMM was trapped in an argon matrix using an effusive source at 298, 388 and 430 K. Experiments were also done using a supersonic jet source to look for conformational cooling in the expansion process. As a result of these experiments, spectrally resolved infrared features of the ground and first higher energy conformer of DMM have been recorded, for the first time. The experimental studies were supported by ab initio computations performed at HF and B3LYP levels, using a 6-31++G** basis set. Computationally, four minima were identified corresponding to conformers with GG, TG, G+G- and TT structures. The computed frequencies at the B3LYP level were found to compare well with the experimental matrix isolation frequencies, leading to a definitive assignment of the infrared features of DMM, for the GG and TG conformers. At the B3LYP/6-31++G** level, the energy difference between the GG and TG conformers was computed to be 2.30 kcal mol(-1). The barrier for conformation interconversion, TG-->GG level was calculated to be 0.95 kcal mol(-1). This value is consistent with the experimental observation that the spectral features due to the TG conformer disappeared in the matrix on annealing.  相似文献   

6.
The infrared spectra of a linear (Cs) and a cyclic (Ci) water dimer and a linear (Cs) and a cyclic (C2h) ammonia dimer have been calculated, at the second order level of MØller-Plesset perturbation theory, using the 6-31G** basis set. The calculated spectra have been compared with the spectra of water and ammonia isolated in nitrogen and argon matrices. In the case of water, theory predicts the linear to be the more stable isomer, and the observed spectrum can only be interpreted in terms of the linear structure. For ammonia, while the experimentally determined spectrum fits the calculated spectrum of the linear dimer fairly closely, the prediction of which is the more stable structure is still ambiguous.  相似文献   

7.
The infrared (3500-80 cm−1) and Raman (3500-20 cm−1) spectra of 3-fluoro-1-butyne, CH3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm−1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm−1 (4.12 ± 0.06 kcal mol−1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state.  相似文献   

8.
Inelastic incoherent neutron scattering (IINS) spectra were obtained at 10K for normal and deuterated l-cysteine. Raman and infrared spectra were also recorded. Geometry of l-cysteine molecule was optimized for the zwitterion form using ab initio HF/6-31G* level. The theoretical frequencies of normal and d(4)-l-cysteine were compared with INS, Raman and IR spectra. Normal coordinate analysis and band assignments based on ab initio calculations and experimental data are presented.  相似文献   

9.
The structural properties of 2,3-cyclopentenopyridine (pyrindan) have been investigated using several spectroscopic and computational techniques. The Raman and infrared spectra of the molecule have been recorded and a full vibrational assignment was proposed on the basis of experimental and theoretical results. The vapor-phase Raman spectrum was successfully obtained at 260 degrees C without sample decomposition. Density functional theory (DFT) and M?ller-Plesset (MP2) calculations predict that the presence of the nitrogen atom in the six-membered ring has almost no effect on the barrier to inversion (587 cm(-1)) and puckering frequency (139 cm(-1)) as compared to the values previously determined (488 cm(-1) and 143 cm(-1)) for the indan molecule.  相似文献   

10.
Single crystals of L-histidine oxalate were obtained by slow evaporation of an aqueous solution at room temperature. The grown crystals have been subjected to X-ray diffraction (XRD), Infrared, and Raman spectroscopy. The title compound crystallises in the non-centrosymmetric space group P2(1)2(1)2(1,) the crystal cohesion is achieved by relatively strong hydrogen bonds, so that the NH3 groups show significant distortion with respect to the tetrahedral symmetry. Raman and infrared spectra of the title compound were recorded in the frequency range 300-3200 and 400-4000 cm-1, respectively. To obtain a reliable assignment of the observed spectral lines, we have calculated the geometry and the frequencies of the vibrational modes of histidine cation and the oxalate anion using the semi empirical PM3 method.  相似文献   

11.
The IR and resonance Raman spectra of the nickel(II) complexes of dibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TAA) and 5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TMTAA) have been measured and compared with ab initio calculations of the vibrational wavenumbers at the B3-LYP level using the LanL2DZ basis set. An excellent fit is found between the experimental and calculated data, enabling precise vibrational assignments to be made. Surface-enhanced resonance Raman spectra were obtained following adsorption on Ag electrodes, with potentials in the range -0.1 to -1.1 V vs Ag/AgCl. There is evidence for contributions from both the electromagnetic and charge transfer (CT) surface enhancement mechanisms. The data indicate that variations in band intensities with electrode potential can be interpreted in terms of the CT mechanism.  相似文献   

12.
The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in A? are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

13.
Effect of nitrogen and argon matrices on the C-H asymmetric stretching and bending infrared frequencies of the acetylene molecule, C(2)H(2), has been studied by matrix isolation experiments as well as by calculations at MP2 level of theory. The complexes of C(2)H(2) in nitrogen and argon matrices, viz., C(2)H(2)(N(2))(m) (with m=2-8) and C(2)H(2)(Ar)(n) (with n=2-10) are theoretically explored. The computed acetylenic C-H asymmetric stretch in C(2)H(2)-nitrogen complexes shows a redshift of 3.0 to 11.9 cm(-1) compared with the frequencies of the free acetylene molecule, and a corresponding blueshift of 7.4 to 26.2 cm(-1) when C(2)H(2) is complexed with argon atoms. The trends in the computed shifts are in good agreement with the experiments. The molecular electrostatic potential minimum of C(2)H(2) becomes more negative when complexed with nitrogen than on complexation with argon. This observation implies a greater basic character for C(2)H(2) in the nitrogen matrix, favoring the formation of H-pi(C(2)H(2)-MeOH) complex as compared to that in the Ar matrix. Experimentally the preferential formation of H-pi(C(2)H(2)-MeOH) complex in the N(2) matrix has indeed been observed.  相似文献   

14.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

15.
The adsorption of ammonia at various active centers at the outer and inner surfaces of mordenite, involving Br?nsted acid (BA) sites, terminal silanol groups, and Lewis sites has been investigated using periodic ab initio density-functional theory. It is shown that ammonia forms an ammonium ion when adsorbed at strong BA sites. The calculated adsorption energies for different BA sites vary in the interval from 111.5 to 174.7 kJ/mol depending on the local environment of the adduct. The lowest adsorption energy is found for a monodentate complex in the main channel, the highest for a tetradentate configuration in the side pocket. At weak BA sites such as terminal silanol groups or a defect with a BA site in a two-membered ring ammonia is H bonded via the N atom. Additional weak H bonds are formed between H atoms of ammonia and O atoms of neighboring terminal silanol groups. The calculated adsorption energies for such adducts range between 61.7 and 70.9 kJ/mol. The interaction of ammonia with different Lewis sites is shown to range between weak (DeltaE(ads)=17.8 kJ/mol) and very strong (DeltaE(ads)=161.7 kJ/mol), the strongest Lewis site being a tricoordinated Al atom at the outer surface. Our results are in very good agreement with the distribution of desorption energies estimated from temperature-programmed desorption (TPD) and microcalorimetry experiments, the multipeaked structure of the TPD spectra is shown to arise from strong and weak Br?nsted and Lewis sites. The vibrational properties of the adsorption complexes are investigated using a force-constant approach. The stretching and bending modes of NH(4) (+) adsorbed to the zeolite are strongly influenced by the local environment. The strongest redshift is calculated for the asymmetric stretching mode involving the NH group hydrogen bonded to the bridging O atom of the BA site, the shift is largest for a monodentate and smallest for a tetradentate adsorption complex. The reduced symmetry of the adsorbate also leads to a substantial splitting of the stretching and bending modes. In agreement with experiment we show that the main vibrational feature which differentiates coordinatively bonded ammonia from a hydrogen-bonded ammonium ion is the absence of bending modes above 1630 cm(-1) and in the region between 1260 and 1600 cm(-1), and a low-frequency bending band in the range from 1130 to 1260 cm(-1). The calculated distribution of vibrational frequencies agrees very well with the measured infrared adsorption spectra. From the comparison of the adsorption data and the vibrational spectra we conclude that due to the complex adsorption geometry the redshift of the asymmetric stretching is a better measure of the acidity of an active sites than the adsorption energy.  相似文献   

16.
Bromine oxides have been generated by passing a mixture of Br(2)/O(2)/Ar through a microwave discharge. The products were stabilized at 6.5 K in an excess amount of argon. Infrared spectroscopy was used to analyze the species formed; experiments with enriched (18)O(2) and ab initio calculations were carried out to assist in the assignment of the spectra. Besides the known species BrO, OBrO, and BrBrO, spectroscopic evidence for BrOBrO, BrBrO(2), and a new isomer of Br(2)O(3) is reported for the first time. Extensive comparisons are drawn between the present studies and previous experimental and theoretical works. The chemistry involved in the production of the observed compounds is discussed. The assignments are corroborated by the good correlation between observed and calculated band positions and intensities.  相似文献   

17.
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at  25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules.  相似文献   

18.
The infrared absorption spectrum of ammonia borane vapor has been recorded between 3600 and 600 cm(-1). Of the eleven infrared active fundamental vibrational modes, seven modes of NH(3)(11)BH(3) and four modes of NH(3)(10)BH(3) were observed. The spectra were recorded with sufficient resolution to observe the rotational structure of the bands, which allowed for preliminary least-squares fitting of the band origins and rotational constants. First-principles electronic structure calculations were performed to obtain anharmonic band origins and their intensities. The band assignments are discussed in relation to other spectroscopic techniques that have been previously used to study this molecule. A semi-empirical estimate of the vapor pressure of ammonia borane at room temperature (22 °C) was made and found to be ~1 × 10(-4) Torr. The assignment of the measured modes was aided by the calculated anharmonic frequencies and their infrared intensities. The combination of the CCSD(T) harmonic frequencies with the B3LYP anharmonicities, obtained from second-order vibrational perturbation theory, was found to produce an overall best agreement with the measured band origins.  相似文献   

19.
20.
The infrared spectra of the cis and gauche conformers of 3-fluoropropene, CH2CHCH2F, were studied in Ne, Ar, Kr and Xe matrices. An infrared-induced cis to gauche rotamerization was found in Ar, Kr and Xe matrices. A thermal interconversion process was also found. Its direction was dependent upon the host, being the same as that of the IR process in Kr but reverse in Ar and Xe. In Ar and Xe matrices considerable site-splitting occurs in the IR spectra and a detailed analysis of the processes in different sites is given. An energy difference of 2.5±0.3 kJ mol−1 between the cis and gauche species was obtained on assuming that the gas phase equilibrium between the conformers is trapped upon deposition. A slow dark process from cis to gauche conformer was observed in Kr matrices at temperatures above 15 K, possibly due to tunnelling. Ab initio calculations were carried out on 3-fluoropropene. The torsional potential energy curve and spectra of the conformers were calculated at the MP2(full)16-31G** level and were compared with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号