首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In this work, optimized size distribution and optical properties in the colloidal synthesis of gold nanoparticles (GNPs) were obtained using a proposed ultrasonic irradiation assisted Turkevich-Frens method. The effect of three nominal ultrasound (20 kHz) irradiation powers: 60, 150, and 210 W have been analyzed as size and shape control parameters. The GNPs colloidal solutions were obtained from chloroauric acid (HAuCl4) and trisodium citrate (C6H5Na3O7·2H2O) under continuous irradiation for 1 h without any additional heat or stirring. The surface plasmon resonance (SPR) was monitored in the UV–Vis spectra every 10 min to found the optimal time for localized SPR wavelength (λLSPR), and the 210 sample procedure has reduced the λLSPR localization at 20 min, while 150 and 60 samples have showed λLSPR at 60 min. The nucleation and growth of GNPs showed changes in shape and size distribution associated with physical (cavitation, temperature) and chemical (radical generation, pH) conditions in the aqueous solution. The results showed quasi-spherical GNPs as pentakis dodecahedron (λLSPR = 560 nm), triakis icosahedron (λLSPR = 535 nm), and tetrakis hexahedron (λLSPR = 525 nm) in a size range from 12 to 16 nm. Chemical effects of ultrasound irradiation were suggested in the disproportionation process, electrons of AuCl2 are rapidly exchanged through the gold surface. After AuCl4 and Cl were desorbed, a tetrachloroaurate complex was recycled for the two-electron reduction by citrate, aurophilic interaction between complexes AuCl2, electrons exchange, and gold seeds, the deposition of new gold atoms on the surface promoting the growth of GNPs. These mechanisms are enhanced by the effects of ultrasound, such as cavitation and transmitted energy into the solution. These results show that the plasmonic response from the reported GNPs can be tuned using a simple methodology with minimum infrastructure requirements. Moreover, the production method could be easily scalable to meet industrial manufacturing needs.  相似文献   

6.
7.
8.
We have investigated the spin and orbital moments of Ir-based double perovskites with 5dn (n = 3, 4, 5) states by local spin-density approximation with spin-orbital coupling and Hubbard correlation (LSDA+SOC+U). Our calculations reveal that the ratio of orbital to spin momentum Lz/Sz approaches to certain values for the double perovskites with different 5dn (n = 3, 4, 5) shell fillings. Based on d orbits, a spin-orbital coupling model with exchange splitting is proposed and it can well describe the ratio of angular momentums for the compounds. Our model calculations reveal that Lz/Sz is determined by the exchange splitting, spin-orbital coupling as well as the state of shell filling. Our model is well corroborated by the experiments and density-functional calculations.  相似文献   

9.
10.
With the help of the nonequilibrium Green's function technique, we theoretically analyze the thermospin property through a typical T-shaped spin valve with spin-flip scattering in the linear regime. The influences of spin-flip coefficient of interdot λ, spin-flip coefficient of intradot η and interdot hopping coefficient t+δσΔt on thermospin property are discussed. As interdot hopping coefficient t is equal to energy level ε, the spectrum of Gs shows Fano-like effect with ε variation. Antiresonance position of Gs is almost unchanged and its width becomes narrower with ε increasing. Spin thermopower Ss is close to the maximum of the peak and charge thermopower Sc is equal to zero for t=ε. As a result, the pure spin thermopower Ss can be obtained, which means that a pure spin current may be produced by a temperature gradient in our system. It is found that spin figure of merit ZTs can reach a considerable value by adjusting key parameters of the system, such as Δt, β, α, ?. The typical T-shaped spin valve can be treated as a stable thermospin battery which allows to convert the heat energy to spin voltage, thus produces the pure spin current in the device.  相似文献   

11.
《Physics letters. A》2020,384(9):126186
The phase diagrams and magnetic properties of double perovskite Sr2CrIrO6 have been studied by using Monte Carlo simulation based on the heat bath algorithm. The ground-state diagrams of the compound Sr2CrIrO6 have been calculated for different combinations of system parameters. The diagrams obtained are very rich and they give an idea of all the most stable configurations. The effects of the exchange interactions and the crystal field on the phase diagrams and magnetic properties of the system have been examined. A number of interesting phenomena have been observed such as the compensation temperature, the first and second order phase transitions, the critical triple point and the terminal critical point.  相似文献   

12.
13.
14.
S. Nazir 《Physics letters. A》2019,383(16):1977-1982
Interfacial magnetism and magnetic anisotropy constant (Ki) in Co/MgO heterostructure have been studied using ab-initio density functional calculations. It is found that interfacial Co spin magnetic moment shows a strong interdependence on Co-O bond lengths and a reasonable spin-polarization of ~80% is established as a function of Co layers. Our results revealed a saturated positive (out-of-plane) Ki of +2.80 mJ/m2 at ≥12 Co layers (~1.6 nm Co thickness), which is associated with orbital magnetic moment difference in [100] and [001] direction along with a strong hybridization between dxy and dx2?y2 orbitals through orbital angular momentum operator Lz?. Furthermore, it is shown that the Ki magnitude almost remains constant and weakens in the case of under- and over-oxidations in the interfacial MgO and Co layers, respectively. Interestingly, Ki improved for oxygen migrated interface due to enhanced dxy and dx2?y2 orbitals coupling. The disordered interfaces stability is checked by analyzing the formation energy. Hence, the present findings disclose that the higher Co thickness in ordered Co/MgO structure supports to out-of-plane [001] (positive) Ki, which could be useful for its technological implementation in high-density magnetic data storage devices with high thermal stability.  相似文献   

15.
16.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

17.
18.
19.
20.
Single quantum dots and other materials exhibit irregular switching between on and off states; these on–off states follow power-law statistics giving rise to 1/f noise. We transfer this phenomenon (also referred to as on–off intermittency) to the generation and recombination (= g–r) process in semiconductor materials. In addition to g–r noise we obtain 1/f noise that can be provided in the form of Hooge's relation. The predicted Hooge coefficient is αH=αXαim whereby αX depends on the parameters of the g–r noise and αim on the parameters of the intermittency. Due to the power-law distribution of the on-times, the coefficient αim shows a smooth dependence on time t. We also suggest an alternative form of Hooge's 1/f noise formula relating the 1/f noise to the number of centers (such as donor or trap atoms) rather than to the number of charge carriers as defined by Hooge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号