首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site.  相似文献   

2.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   

3.
4.
Characterization of clarithromycin polymorph was performed by solid-state cross polarization and magic angle spinning (CP/MAS) 13C-NMR spectroscopy. Two polymorphs, form II and form I, of clarithromycins indicated characteristic resonances of C1 carbonyl carbon at 176.2 and 175.2 ppm, respectively. Since each peak of C1 carbon was well separated in the spectrum of the two polymorphs, we performed quantitative analysis of the polymorphic fraction from the peak area of these peaks. The peak area of form I was found to linearly increase with an increase of its content, with a correlation coefficient of above 0.99. Solid-state NMR was found to be a useful technique to determine the characteristics of the polymorphic forms.  相似文献   

5.
Two polymorphs of the bronchodilator tulobuterol (2-chloro-α-[[(1,1-dimethylethyl)- amino]-methyl]benzenemethanol) with melting points differing by ~10 K were isolated and characterized by thermal analysis (HSM, TG, DSC), as well as powder and single crystal X-ray diffraction. Analysis of melting data for Forms 1 and 2 revealed a monotropic relationship, with ΔG 0, the Gibbs free energy difference at the melting temperature of the lower melting form, less than 1 kJ mol-1. This small difference is reconciled with known structural features in the crystals of the two forms. The hydrogen bonding capacity of the tulobuterol molecule is fully utilised in both polymorphs in forming a common trimeric unit via three strong O-H···N interactions. Consequently only weak intermolecular forces characterize the packing of the trimers in the monoclinic polymorph (Form 1, P21/n, Z =12) and the triclinic polymorph (Form 2, P(-1),Z =6). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
A series of six L-amino acid hydrochloride salts has been studied by 35/37Cl solid-state NMR spectroscopy (at 11.75 and 21.1 T) and complementary quantum chemical calculations. Analyses of NMR spectra acquired under static and magic-angle-spinning conditions for the six hydrochloride salts, those of aspartic acid, alanine, cysteine, histidine, methionine and threonine, allowed the extraction of information regarding the chlorine electric field gradient (EFG) and chemical shift tensors, including their relative orientation. Both tensors are found to be highly dependent on the local environment, with chlorine-35 quadrupolar coupling constants (CQ) ranging from -7.1 to 4.41 MHz and chemical shift tensor spans ranging from 60 to 100 ppm; the value of CQ for aspartic acid hydrochloride is the largest in magnitude observed to date for an organic hydrochloride salt. Quantum chemical calculations performed on cluster models of the chloride ion environment demonstrated agreement between experiment and theory, reproducing CQ to within 18%. In addition, the accuracy of the calculated values of the NMR parameters as a function of the quality of the input structure was explored. Selected X-ray structures were determined (L-Asp HCl; L-Thr HCl) or re-determined (L-Cys HCl.H2O) to demonstrate the benefits of having accurate crystal structures for calculations. The self-consistent charge field perturbation model was also employed and was found to improve the accuracy of calculated quadrupolar coupling constants, demonstrating the impact of the neighbouring ions on the EFG tensor of the central chloride ion. Taken together, the present work contributes to an improved understanding of the factors influencing 35/37Cl NMR interaction tensors in organic hydrochlorides.  相似文献   

8.
Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints, such as heteronuclear dipolar couplings between 1H, 13C, and 31P nuclei, in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques, such as PISEMA. In addition, multiple dipolar couplings can be measured accurately, and the presence of a strong dipolar coupling does not suppress the weak couplings. High-resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins.  相似文献   

9.
Calcium silicate hydrate (C-S-H) is the main constituent of hydrated cement paste and determines its cohesive properties. Because of the environmental impact of cement industry, it is more and more common to replace a part of the clinker in cement by secondary cementitious materials (SCMs). These SCMs are generally alumina-rich and as a consequence some aluminum is incorporated into the C-S-H. This may have consequences on the cohesion and durability of the material, and it is thus of importance to know the amount and the location of Al in C-S-H and what the parameters are that control these features. The present paper reports the (29)Si and (27)Al MAS NMR analyses of well-characterized C-A-S-H samples (C-S-H containing Al). These samples were synthesized using an original procedure that successfully leads to pure C-A-S-H of controlled compositions in equilibrium with well-characterized solutions. The (27)Al MAS NMR spectra were quantitatively interpreted assuming a tobermorite-like structure for C-A-S-H to determine the aluminum location in this structure. For this purpose, an in-house written software was used which allows decomposing several spectra simultaneously using the same constrained spectral parameters for each resonance but with variable intensities. The hypothesis on the aluminum location in the C-A-S-H structure determines the proportion of each silicon site. Therefore, from the (27)Al NMR quantitative results and the chemical composition of each sample, the intensity of each resonance line in the (29)Si spectra was set. The agreement between the experimental and calculated (29)Si MAS NMR spectra corroborates the assumed C-A-S-H structure and the proposed Al incorporation mechanism. The consistency between the results obtained for all compositions provides another means to assess the assumptions on the C-A-S-H structure. It is found that Al substitutes Si mainly in bridging positions and moderately in pairing positions in some conditions. Al in pairing site is observed only for Ca/(Si+Al) ratios greater than 0.95 (equivalent to 4 mmol.L(-1) of calcium hydroxide). Finally, the results suggest that penta and hexa-coordinated aluminum are adsorbed on the sides of the C-A-S-H particles.  相似文献   

10.
11.
The feasibility of using solid-state magic-angle-spinning NMR spectroscopy for in situ structural characterization of the LR11 (sorLA) transmembrane domain (TM) in native Escherichia coli membranes is presented. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer's disease. The background signals from E. coli lipids and membrane proteins had only minor effects on the LR11 TM resonances. Approximately 50% of the LR11 TM residues were assigned by using (13)C PARIS data. These assignments allowed comparisons of the secondary structure of the LR11 TM in native membrane environments and commonly used membrane mimics (e.g., micelles). In situ spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis and offers the opportunity to investigate how membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding affect the protein structure.  相似文献   

12.
Silver(I) complexes of several thiolates have been prepared. These complexes have been characterized by elemental analysis and 13C NMR spectroscopy. All the Ag(I)-thiolate complexes are polymeric in nature. Therefore, 13C CP MAS NMR is being used extensively to analyze the binding site of the ligand and the nature of complexation. A significant shift difference was observed for S binding site whereas smaller shift was observed for carboxylate binding site. The antimicrobial activities for Ag(I)-glutathione complex was measured and compared with Ag(I)-captopril complex.  相似文献   

13.
14.
Based on continuous methodical advances and developments, solid-state NMR spectroscopy has become a powerful tool for the investigation of various materials, including polymers, glasses, zeolites, fullerenes, and many others. During the past decade, solid-state NMR spectroscopy also found increasing interest for the study of biomolecules. For example, membrane proteins reconstituted into lipid environments such as bilayers or vesicles, protein aggregates such as amyloid fibrils, as well as carbohydrates can now be studied by solid-state NMR spectroscopy. This review briefly introduces the principles of solid-state NMR spectroscopy and highlights novel methodical trends. Selected applications demonstrate the possibilities of solid-state NMR spectroscopy as a valuable bioanalytical tool.  相似文献   

15.
We report solid-state 35Cl NMR spectra in three hexachlorides, (NH4)2SeCl6, (NH4)2TeCl6 and Rb2TeCl6. The CQ(35Cl) quadrupole coupling constants in the three compounds were found to be 41.4±0.1 MHz, 30.3±0.1 MHz and 30.3±0.1 MHz, respectively, some of the largest CQ(35Cl) quadrupole coupling constants ever measured in polycrystalline powdered solids directly via 35Cl NMR spectroscopy. The 35Cl EFG tensors are axial in all three cases reflecting the C4v point group symmetry of the chlorine sites. 35Cl NMR experiments in these compounds were only made possible by employing the WURST-QCPMG pulse sequence in the ultrahigh magnetic field of 21.1 T. 35Cl NMR results agree with the earlier reported 35Cl NQR values and with the complementary plane-wave DFT calculations. The origin of the very large CQ(35Cl) quadrupole coupling constants in these and other main-group chlorides lies in the covalent-type chlorine bonding. The ionic bonding in the ionic chlorides results in significantly reduced CQ(35Cl) values as illustrated with triphenyltellurium chloride Ph3TeCl. The high sensitivity of 35Cl NMR to the chlorine coordination environment is demonstrated using tetrachlorohydroxotellurate hydrate K[TeCl4(OH)]?0.5H2O as an example. 125Te MAS NMR experiments were performed for tellurium compounds to support 35Cl NMR findings.  相似文献   

16.
NMR spectroscopy has been used to characterize poly(p-phenylene terephthalamide) in the solid state and in solution in sulfuric acid. Solid-state 13C NMR spectra illustrate that the chain structure is highly ordered in the solid state and is of lower symmetry than in solution. Solid-state 13C and 1H NMR results show that only very limited motion takes place over the temperature range of ?170 to +200°C. High-resolution NMR spectra can be observed only in very dilute isotropic solutions because it is the overall rotational motion of the polymer, not segmental motion, that averages the nuclear spin interactions to their isotropic values. These results demonstrate that previous solution NMR studies that were interpreted as reflecting the presence of isotropic and anisotropic high-molecular-weight polymer phases over a wide range of concentrations actually are representative of polymer degradation.  相似文献   

17.
Atovaquone, 2-[4-(4-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-naphthoquinone, is an antimicrobial medicament used to treat or prevent pneumocystis carinii pneumonia, toxoplasmosis and malaria. Two polymorphs of Atovaquone (crystal phases I and III) were isolated and their crystal and molecular structures were determined by single crystal X-ray analysis. In both crystal phases, strong hydrogen bond interactions link adjacent molecules in centrosymmetric dimers. The existence of the different polymorphs is determined by the different orientation of the dimers in the crystal packing. In addition, a crystalline phase of the 2-chloro substituted derivative, which is not stabilized by intermolecular H-bond interactions, was also studied, and compared with those of the pristine (hydroxylic) species. DSC measurements and thermodiffractometry analyses on polycrystalline batches witnessed the 100% purity of the isolated materials and disclosed the crystal-to-crystal interconversion of phase I to phase III upon heating at 210 °C.  相似文献   

18.
Solid-state NMR spectroscopy is applied to intact peptidoglycan sacculi of the Gram-negative bacterium Escherichia coli. High-quality solid-state NMR spectra allow atom-resolved investigation of the peptidoglycan structure and dynamics as well as the study of protein-peptidoglycan interactions.  相似文献   

19.
Harris RK 《The Analyst》2006,131(3):351-373
This review article describes the applications of NMR to the study of polymorphs and related forms (solvates) of organic (especially pharmaceutical) compounds, for which it is of increasing academic and practical importance. The nature of the systems covered is briefly introduced, as are the techniques constituting solid-state NMR. The methodologies involved are then reviewed under a number of different headings, ranging from spectral editing through relaxation times to shielding tensors and NMR crystallography. In each case the relevant applications are described. Whilst most studies concentrate on structural matters, motional effects are not neglected. A special section discusses studies of solvates (especially hydrates), and another reviews quantitative analysis.  相似文献   

20.
Two of the three conformational polymorphs of dimethyl-3,6-dichloro-2,5-dihydroxyterephthalate are studied by solid-state NMR techniques. The structural differences between the polymorphs have previously been studied by X-ray. In these two polymorphs named white and yellow due to their color, the major structural difference is the torsional angle between the ester group and the aromatic ring. The yellow form has a dihedral angle of 4 degrees between the plane of the aromatic ring and the plane of the ester group, while the white form has two different molecules per unit cell with dihedral angles of 70 degrees and 85 degrees. This change greatly affects the conjugation in the pi-electronic system. In addition, there are differences in the hydrogen-bonding patterns, with the white form having intermolecular hydrogen bonds and the yellow form having intramolecular hydrogen bonds. In this work, the carbon isotropic chemical shift values and the chlorine electric field gradient (EFG) tensor information are extracted from the (13)C MAS spectra, and the principal values of the chemical shift tensors of the carbons are obtained from 2D FIREMAT experiments. Quantum chemical calculations of the chemical shift tensor data as well as the EFG tensor are performed at the HF and DFT levels of theory on individual molecules and on stacks of three molecules to account for the important intermolecular interactions in the white form. The differences between the spectral data on the two polymorphs are discussed in terms of the known electronic and structural differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号