首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tolerance, bioaccumulation, biotransformation and excretion of arsenic compounds by the fresh–water shrimp (Neocaridina denticulata) and the killifish (Oryzias latipes) (collected from the natural environment) were investigated. Tolerances (LC50) of the shrimp against disodium arsenate [abbreviated as As(V)], methylarsonic acid (MAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB) were 1.5, 10, 40, and 150μg As ml?1, respectively. N. denticulata accumulated arsenic from an aqueous phase containing 1 μg As ml?1 of As(V), 10 μg As ml?1 of MAA, 30 μg As ml?1 of DMAA or 150 μg As ml?1 of AB, and biotransformed and excreted part of these species. Both methylation and demethylation of the arsenicals were observed in vivo. When living N. denticulata accumulating arsenic was transferred into an arsenic–free medium, a part of the accumulated arsenic was excreted. The concentration of methylated arsenicals relative to total arsenic was higher in the excrement than in the organism. Total arsenic accumulation in each species via food in the food chain Green algae (Chlorella vulgaris) → shrimp (N. denticulata) → killifish (O. latipes) decreased by one order of magnitude or more, and the concentration of methylated arsenic relative to total arsenic accumulated increased successively with elevation in the trophic level. Only trace amounts of monomethylarsenic species were detected in the shrimp and fish tested. Dimethylarsenic species in alga and shrimp, and trimethylarsenic species in killifish, were the predominant methylated arsenic species, respectively.  相似文献   

2.
The vertical profies of inorganic arsenic [As(III)+As(V)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) were investigated at four sampling stations in the Pacific Ocean and a sampling station in the southern Tasman Sea. In addition, the concentrations of those compounds in surface waters of the Pacific Ocean and Tasman Sea have been determined. The vertical profiles of inorganic arsenic showed the low concentrations in both the surface and deep/bottom zones. The depleted concentrations in the surface zone varied from 1000 to 1700 ng dm−3 and that in the deep/bottom zone varied from 1300 to 2050 ng dm−3. The maximum concentrations that varied from 1500 to 2450 ng dm−3 were usually observed at a depth of about 2000 m. Both MMAA and DMAA were observed throughout the water column at sampling stations in the north-western and equatorial regions of the Pacific Ocean. At the sampling station in the central northern Pacific gyre, DMAA was the only methylated arsenic compound observed throughout the water column. On the contrary, at the sampling station in the southern Tasman Sea, the only detected methylated arsenic compound throughout the water column was MMAA. Their vertical profiles showed maximum concentrations in the surface water which abruptly dropped with depth from 0 to 200 m. The concentration in the surface water was close to 10 ng dm−3 for MMAA and varied from 27 to 185 ng dm−3 for DMAA. At depths greater than 100 m, MMAA and DMAA were at comparable concentrations which varied from 0.7 to 14 ng dm−3. The low inorganic arsenic concentration in the surface zone was due to biological activity. This activity resulted in the uptake of As(V) and subsequent reduction and methylation to MMAA and DMAA. DMAA was the main predominant arsenic compound resulting from biological activity in surface waters. The low inorganic arsenic concentrations in the deep and bottom zones were likely to be caused by the adsorption of dissolved inorganic arsenic onto sinking particulates rich in iron and manganese oxides.  相似文献   

3.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

4.
The effects of light on arsenic accumulation of Thraustochytrium CHN‐1 were investigated. Thraustochytrium CHN‐1, when exposed to blue light from light‐emitting diodes (LEDs), accumulated arsenate added to its growth medium to a much greater extent than Thraustochytrium cells exposed to fluorescent or red light, or when cultured in the dark. Arsenic compounds in Thraustochytrium CHN‐1 were analyzed by high‐performance liquid chromatography, with an inductively coupled plasma mass spectrometer serving as an arsenic‐specific detector. Arsenate, arsenite, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA) and arsenosugar were identified. The order of arsenic species in Thraustochytrium CHN‐1 was arsenic(V)> arsenic(III)> MMAA > DMAA at an arsenic concentration of 10 mg dm?3 in the medium in blue LED light. As it is known that blue light induces the synthesis of certain metabolites in plants and microorganisms, this indicates that the accumulation of arsenic is an active metabolic process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The vertical profiles of inorganic arsenic [As(III)+As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), inorganic germanium and monomethylgermanium (MMGe) were investigated at three sampling stations in the Pacific Ocean. In addition, the concentrations of these species in various surface waters have also been determined. The vertical profile of both inorganic arsenic and germanium displayed low concentrations, 1100 to 1450 ng dm3 for inorganic arsenic and <0.7 to 2 ng dm3 for inorganic germanium, in the surface zone. The concentrations of inorganic arsenic increased with depth to maximum concentrations that varied from 1500 to 2200 ng dm3 at a depth of 2000 m and then slowly decreased to concentrations that varied from 1300 to 1900 ng dm3 at a depth of 5000 m. On the other hand, the vertical profiles of inorganic germanium displayed a relatively constant concentration (4 to 8 ng dm3) from a depth of 2000 m to 5000 m. These vertical profiles of inorganic germanium were linearly correlated with those of silicate with a Ge/Si molar ratio of 0.715×106. Both MMAA and DMAA displayed maximum concentrations in surface water and abruptly dropped with depth from 0 to 200 m. The concentration in surface water was 12 ng dm3 for MMAA and varied from 48 to 185 ng dm3 for DMAA. At depths >200 m, MMAA and DMAA were generally at comparable concentrations of about 3 ng dm3. In the case of MMGe, it was uniformly distributed throughout the water column at a concentration of approximately 16 ng dm3, indicating that MMGe was not involved in the biogeochemical cycling of inorganic germanium. In deep waters (>200 m), the concentrations of both inorganic arsenic and germanium increased from the southern Tasman Sea to the north. The increase in inorganic arsenic concentration was linearly correlated with that of phosphate and the increase in inorganic germanium concentration was linearly correlated with that of silicate, with apparent δAs/δP and δGe/δSi molar ratios of 4.53×103 and 0.73×106, respectively. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
Differentiation between As(III) and As(V) is accomplished using earlier developed selective preconcentration methods (carbamate and molybdate mediated (co)precipitation of As(III) and As(V) respectively) follewed by AAS detection of the (co)precipitates. Apart from this, separation of methylated arsenic species is performed by an automatable system comprising a continuous flow hydride generation unit in which monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) are converted into their corresponding volatile methylarsines, monomethylarsine (MMA) and dimethylarsine (DMA) respectively. These species are cryogenically trapped in a Teflon-line stainless stell U-tube packed with a gas chromatographic solid-phase and subsequently separated by selective volatilization. A novel gas drying technique by means of a Perma Pure dryer was applied successfully prior to trapping. Detection is by atomic absorption spectrometry (AAS). MMAA and DMAA are determined with absolute limits of detection of 0.2 and 0.5 ng, respectively. Investigation of the behaviour of the methylarsines in the system was conducted with synthesized73As labeled methylated arsenic species. It was found that MMA is taken through the system quantitatively whereas DMA is recovered for about 85%. The opumized system combined with selective As(III)/As(V) preconcentration has been tested out for arsenic speciation of sediment interstitial water from the Chemiehaven at Rotterdam. The obtained concentrations are 28.5, 26.8 and 0.60 ng·ml–1 for As(III), As(V) and MMAA, respectively, whereas the DMAA concentration was below 0.16 ng·ml–1.  相似文献   

7.
In the present study, we demonstrated for the first time the immunotoxic effects of organic arsenic compounds in marine animals, namely arsenocholine [AsCho; trimethyl(2-hydroxyethyl)arsonium cation], arsenobetaine [AsBe; the trimethyl(carboxymethyl)arsonium zwitterion] and the tetramethylarsonium ion (TetMA), to murine principal immune effector cells (macrophages and lymphocytes), comparing them with the effects of inorganic arsenicals in vitro . Inorganic arsenicals (arsenite and arsenate) showed strong cytotoxicity to both macrophages and lymphocytes. The concentration of arsenite that reduced the number of surviving cells to 50% of that in untreated controls (IC50) was 3–5 μmol dm−3, and the cytotoxicity of arsenate (IC50=100 μ-1 m mol dm−3) was lower than that of arsenite. Compared with these findings, trimethylarsenic compounds in marine animals, AsCho and AsBe, were less toxic even at a concentration over 10 mmol dm−3 to both macrophages and lymphocytes; however, TetMA had weak, but significant, cytotoxicity to these cells (IC50 was about 6 mmol dm−3).  相似文献   

8.
Water-soluble 3H-labeled arsenic compounds were phenol-extracted from mussels (Mytilus edulis) and seawater after exposure to [3H]monomethylarsonate (MMAA) and [3H]dimethylarsinate (DMAA). Varying amounts of [3H] arsenobetaine were found in mussels and seawater, depending upon the experimental conditions. The results indicate that arsenobetaine is principally biosynthesized by microscopic organisms in the seawater and that it is bioaccumulated by mussels. Total arsenic concentrations in mussel flesh, byssal threads and shells were also determined, showing concentration increases in all three compartments.  相似文献   

9.
The bioaccumulation and excretion of antimony by the freshwater alga Chlorella vulgaris , which had been isolated from an arsenic-polluted environment, are described. When this alga was cultured in a medium containing 50 μg cm−3 of antimony(III) for 14 days, it was found that Chlorella vulgaris bioaccumulated antimony at concentrations up to 12 000 μg Sb g−1 dry wt after six days' incubation. The antimony concentration in Chlorella vulgaris decreased from 2570 to 1610 μg Sb g−1 dry wt after the cells were transferred to an antimony-free medium. We found that the excreted antimony consists of 40% antimony(V) and 60% antimony(III). This means that the highly toxic antimony(III) was converted to the less toxic antimony (V) by the living organism. Antimony accumulated in living Chlorella vulgaris cells was solvent-fractionated with chloroform/methanol (2:1), and the extract residue was fractionated with 1% sodium dodecyl sulfate (SDS). Gel-filtration chromatography of the solubilized part showed that antimony was combined with proteins whose molecular weight was around 4×104 in the antimony-accumulated living cells. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
Arsenic compounds were determined in 21 urine samples collected from a male volunteer. The volunteer was exposed to arsenic through either consumption of codfish or inhalation of small amounts of (CH3)3As present in the laboratory air. The arsenic compounds in the urine were separated and quantified with an HPLC–ICP–MS system equipped with a hydraulic high-pressure nebulizer. This method has a determination limit of 0.5 μg As dm−3 urine. To eliminate the influence of the density of the urine, creatinine was determined and all concentrations of arsenic compounds were expressed in μg As g−1 creatinine. The concentrations of arsenite, arsenate and methylarsonic acid in the urine were not influenced by the consumption of seafood. Exposure to trimethylarsine doubled the concentration of arsenate and increased the concentration of methylarsonic acid drastically (0.5 to 5 μg As g−1 creatinine). The concentration of dimethylarsinic acid was elevated after the first consumption of fish (2.8 to 4.3 μg As g−1 creatinine), after the second consumption of fish (4.9 to 26.5 μg As g−1 creatinine) and after exposure to trimethyl- arsine (2.9 to 9.6 μg As g−1 creatinine). As expected, the concentration of arsenobetaine in the urine increased 30- to 50-fold after the first consumption of codfish. Surprisingly, the concentration of arsenobetaine also increased after exposure to trimethylarsine, from a background of approximately 1 μg As g−1 creatinine up to 33.1 μg As g−1 creatinine. Arsenobetaine was detected in all the urine samples investigated. The arsenobetaine in the urine not ascribable to consumed seafood could come from food items of terrestrial origin that—unknown to us—contain arsenobetaine. The possibility that the human body is capable of metabolizing trimethyl- arsine to arsenobetaine must be considered. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
Study on simultaneous speciation of arsenic and antimony by HPLC-ICP-MS   总被引:1,自引:0,他引:1  
A method was developed for the simultaneous speciation of arsenic and antimony with HPLC-ICP-MS using C30 reversed phase column. Eight kinds of arsenic compounds (As(III), As(V), monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenobetaine (AB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium (TeMA)), Sb(III) and Sb(V) were simultaneously separated by the special mobile phase containing ammonium tartrate. Especially for the species of organic As, a C30 column was better than a C18 column in the effect of separation. Limits of detection (LOD) for these elements were 0.2 ng ml−1 for the species of each As, and 0.5 ng ml−1 for the species of each Sb, when a 10 μl of sample was injected, respectively. The proposed method was applied to a hot spring water and a fish sample.  相似文献   

12.
Brisbin JA  B'hymer C  Caruso JA 《Talanta》2002,58(1):133-145
A gradient anion exchange chromatographic technique was developed for the separation of arsenobetaine (AsB), arsenocholine (AsC), arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in one chromatographic run. This technique used low residue ammonium carbonate buffer and the inductively coupled plasma-mass spectrometry (ICP-MS) chromatograms showed little baseline drift. Gradient elution improved peak shape and peak separation. The separation was completed in approximately 27 min with low detection limits (0.017-0.029 mug As kg(-1)). Baseline resolution of all the arsenic species evaluated was achieved when the concentration of AsC was less than approximately 12.5 mug As kg(-1). This technique was successfully applied to different extracts of a standard reference material, TORT-2, and lobster tissue. AsB was found to be the major arsenic species present. AsC, DMAA, MMAA and As(V) were also found, although MMAA was not detected in all of the TORT-2 extracts. Two unknown peaks found may be due to the presence of arsenosugars or other arsenic species. Discrepancy between extraction recoveries previously determined using flow injection-ICP-MS and the high-performance liquid chromatography-ICP-MS was observed in some cases. The differences may be due to the extraction technique and/or conditions at which the extractions were performed.  相似文献   

13.
Bioaccumulation and biomethylation of inorganic arsenic were investigated in a three-step fresh-water food chain consisting of an autotroph (blue- green alga: Nostoc sp.), a herbivore (shrimp: Neocaridina denticulata) and a carnivore (carp: Cyprinus carpio). The autotroph, herbivore and carnivore survived in arsenic-containing water below 1000, 2 and 60 mg As(V) dm?3, respectively. Bioaccumulation of arsenate by Nostoc sp. was decreased with an increase in the nitrogen concentration of the medium. Arsenic(V) was accumulated from the water phase and part-methylated by the carp, as well as by the algae and shrimp. Arsenic was mostly accumulated in the gut of the carp. The predominant arsenical in the guts was the monomethylarsenic species. Arsenic accumulation via food in the above three-step food chain decreased by one order of magnitude and the relative concentration of methylated arsenic to the total arsenic accumulated increased successively with an elevation in the trophic level. When arsenicals were transferred via the food chain, no monomethylarsenic, or only a trace amount, was detected in the three organisms. Dimethylarsenic in the alga, both dimethyl- and trimethyl-arsenic in shrimp, and trimethyl-arsenic in carp, were the predominant methylated arsenic species, respectively.  相似文献   

14.
Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, l-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5–10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l 1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5–10 μg l 1.Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l 1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l 1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l 1 for As(III) and 0.3 μg l 1 for the other three As species and precision is within 4–8% RSDs.Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l 1 (as As) and RSDs were 2–6%, 5–9%, 3–7% and 2–5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As(III), arsenite, has been confirmed as major arsenic species.  相似文献   

15.
An automated method for the determination of arsenic acid (AsV), arsenous acid (AsIII), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) was developed using a commercial available flow injection hydride generation system. By carrying out the hydride generation in selected acid media the determination of As(III) alone, of MMAA and DMAA by sum and by different sensitivities, and of all four species is possible.  相似文献   

16.
Rhaphydophyceae Chattonella antiqua (Hada) Ono was grown in seawater containing an arsenic concentration up to 50 mg dm−3, and survived even at 200 mg dm−3. The arsenic content increased with an increase of the surrounding arsenic, iron and manganese concentrations. However, arsenic accumulation was unaffected by phosphorus concentration. Also, arsenic content in C. antiqua decreased at a selenium concentration of up 20 mg dm−3, and was reduced by the addition of antimony. In the living cells, about 52% of the arsenic which accumulated in each cell was found in the intracellular fraction, 27% in the lipid fraction, and 21% in the cell wall fraction.  相似文献   

17.
Samples of the edible mushroom Laccaria amethystina, which is known to accumulate arsenic, were collected from two uncontaminated beech forests and an arsenic-contaminated one in Denmark. The total arsenic concentration was 23 and 77 μg As g−1 (dry weight) in the two uncontaminated samples and 1420 μg As g−1 in the contaminated sample. The arsenic species were liberated from the samples using focused microwave-assisted extraction, and were separated and detected by anion- and cation-exchange high-performance liquid chromatography with an inductively coupled plasma mass spectrometer as arsenic-selective detector. Dimethylarsinic acid accounted for 68–74%, methylarsonic acid for 0.3–2.9%, trimethylarsine oxide for 0.6–2.0% and arsenic acid for 0.1–6.1% of the total arsenic. The unextractable fraction of arsenic ranged between 15 and 32%. The results also showed that when growing in the highly arsenate-contaminated soil (500–800 μg As g−1) the mushrooms or their associated bacteria were able to biosynthesize dimethylarsinic acid from arsinic acid in the soil. Furthermore, arsenobetaine and trimethylarsine oxide were detected for the first time in Laccaria amethystina. Additionally, unidentified arsenic species were detected in the mushroom. The finding of arsenobetaine and trimethylarsine oxide in low amounts in the mushrooms showed that synthesis of this arsenical in nature is not restricted to marine biota. In order to minimize the toxicological risk of arsenic to humans it is recommended not to consume Laccaria amethystina mushrooms collected from the highly contaminated soil, because of a genotoxic effect of dimethylarsinic acid observed at high doses in animal experiments. © 1998 John Wiley & Sons, Ltd. No Abstract.  相似文献   

18.
A combined ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP—MS) system as an element-selective detector has been used for the determination of arsenic compounds. Seven arsenic compounds were separated by cation-exchange chromatography. Subsequently, the separated arsenic compounds were directly introduced into the ICP—MS and were detected at m/z =75. Detection limits for the seven arsenic compounds ranged from 0.8 to 3.8 μg As/l. The IC–ICP–MS system was applied to the determination of arsenic compounds in the urine of dimethylarsinic acid (DMAA)-exposed rats. DMAA was the most abundant arsenic compound detected. Arsenous acid, monomethylarsonic acid and trimethylarsine oxide were also detected.  相似文献   

19.
The conditions necessary for the complete decomposition of six organic arsenic compounds, namely methylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide, tetramethylarsonium iodide, arsenocholine bromide (AsC) and arsenobetaine (AB), were investigated. The degree of decomposition of the arsenic compounds was monitored using a hydride generation (HYD) technique, because the response from this system depends strongly on the chemical species of arsenic, with inorganic arsenic (the expected product from these decomposition experiments) giving a much more intense HYD signal than the organic arsenic compounds. The arsenic compounds were decomposed by heating them with three types of acid mixture, namely HNO3? HClO4, HNO3? HClO4? HF, or HNO3? HClO4? H2SO4. Both MMAA and DMAA were decomposed completely using any of the mixed acids at a decomposition temperature of 200 °C or higher. The HNO3? HClO4? H2SO4 mixture was the most effective for decomposing AsC and AB, which are the most difficult compounds among all types of organic arsenic compound to decompose and render inorganic. The complete decomposition of AB was only achieved, however, when the temperature was 320 °C or higher, and the sample was evaporated to dryness. When the residue from this treatment was examined by high‐performance liquid chromatography combined with inductively coupled plasma atomic emission spectrometry, all of the arsenic was found to be present as arsenic(V). The optimized conditions (HNO3? HClO4? H2SO4 at 320 °C) for decomposing AB were then used to determine the total amount of arsenic in marine organisms known to contain AB. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A flow-injection chemiluminescence (CL) method has been proposed for sensitive determination of arsenate, germanate, phosphate and silicate, after separation by ion chromatography (IC). The post-column detection system involved formation of heteropoly acid in a H2SO4 medium before the CL reaction with luminol in an NaOH medium. For separation, heteropoly acid formation and the CL detection reaction, pH requirements were not compatible. When present as a heteropoly acid complex with molybdenum(VI), ger- manium(IV) and silicon(IV) caused CL emission from oxidation of luminol, and such a CL oxidation of luminol was observed analogously for arsenic(V) and phosphorus(V) but with the addition of metavanadate ion to the acid solution of molybdate. Good sensitivity for the three analytes arsenic(V), ger- manium(IV) and phosphorus(V) could be given by a single set of reagent conditions, chosen carefully. Another set was suitable for determining phosphorus(V) and silicon(IV). The minimum detectable concentrations of arsenic(V), germanium(IV), phosphorus(V) and silicon(IV) were 10, 50, 1 and 10 μg l−1, respectively. Linear calibrations for arsenic(V), germanium(IV), phosphorus(V) and silicon(IV) were established over the respective concentration ranges of 10–1000, 50–25000, 1–1000 and 50–1 μg l−1. The proposed IC–CL method was successfully applied to analyses of a seaweed reference material, rice wine and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号