首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen production by conversion of methane over Ni-supported zeolite catalysts was investigated, and Ni-supported USY-type zeolite (Si/Al2 = 14.0, 360) was found to have longer catalytic lifetime than Ni-supported silica (Cab-O-Sil) catalyst, which had been reported to have the longest catalytic lifetime for this reaction.  相似文献   

2.
The promoting effect of TiO2 on CH4 formation from CH3OH decomposition has been investigated. Hydrogen and CO are products of CH3OH decomposition which can subsequently react to produce CH4. We observe an enhancement in this secondary reaction when the support is TiO2. This enhancement is lost after a high temperature reduction.
TiO2 CH4 CH3OH. CH3OH CO, , CH4. TiO2 . , , .
  相似文献   

3.
甲烷在活性炭上裂解制氢研究   总被引:1,自引:4,他引:1  
在连续流动石英固定床反应器上研究了甲烷在活性炭上裂解制氢的反应,并对反应前后活性炭的比表面积以及孔径分布等的变化进行了测定。结果表明,甲烷在五种活性炭上的裂解行为基本相同,反应初期转化率最高,随着反应进行转化率逐渐降低直至一个平稳的状态;降低甲烷分压和增加甲烷与活性炭的接触时间可提高甲烷转化率;温度的升高有利于初始转化率的提高,但不利于活性炭的稳定性;反应后活性炭比表面积、孔容及微孔孔容都明显降低,平均孔径增大,孔径分布向中孔方向迁移,说明甲烷的裂解导致了活性炭孔特别是微孔内的炭沉积以及进一步的孔堵塞。  相似文献   

4.
Monometallic and bimetallic catalysts based on palladium and copper deposited on a spinel carrier have been investigated in the catalytic combustion of methane. Great differences were found in catalytic activity, according to the sequence Pd/MgAl2O4>CuO–Pd/MgAl2O4>Pd–CuO/MgAl2O4>CuO/MgAl2O4. They were explained by changes in surface composition of the catalysts. In the case of bimetallic catalysts the metallic surface is preferentially enriched in copper, which acts as a diluting agent for the Pd atom ensembles. As a consequence, the adsorption of reactants is limited and the catalysts so obtained behave like copper slightly doped with palladium.  相似文献   

5.
In this study, COx-free hydrogen production via methane decomposition was studied over Cu–Zn-promoted tri-metallic Ni–Co–Al catalysts. The catalysts have been prepared by the constant pH co-precipitation method, and the nominal Ni metal loading was fixed at 50 wt % along with other metals at 10 wt% each. The catalyst activity for methane decomposition reaction was examined in a reactor between 400 °C and 700 °C and at atmospheric pressure. Different techniques such as N2-physisorption, X-ray diffraction, H2-TPR SEM, TEM, ICP-MS, TGA, and Raman spectroscopy were applied to characterize the catalysts. The relation between the catalyst composition and their catalytic activity has been investigated. The controlled synthesis has resulted in a series of catalysts with a high surface area. Ni–Co–Cu–Zn–Al was the most active and productive catalyst. Various characterizations indicate that the promotional effects of Cu–Zn interaction were the critical factor in catalysts' activity and stability. Ni–Co–Cu–Zn catalyst gave the highest methane conversion of 85% at 700 °C. Zn addition improves the stability of the catalyst by retaining the active metal size during the decomposition reaction. The catalyst was active for 80 h of stability study. The rapid deactivation of the Ni–Co catalyst was due to the sintering of the catalyst at 650 °C. Moreover, carbon species accumulated during the methane decomposition reaction depend on the catalysts' composition. Zn promotes the growth of reasonably long and thin carbon nanotubes, whereas the diameter of carbon nanotubes on unpromoted catalysts was large.  相似文献   

6.
《Comptes Rendus Chimie》2017,20(7):738-746
NiMgAl–based catalysts were synthesized by coprecipitation, sol–gel, and impregnation methods, calcined at 700 °C for 4 h and tested in partial oxidation of methane in a temperature range of 500–800 °C. The fresh and used unsupported and supported samples were characterized by X-ray diffraction, nitrogen physisorption with Brunauer-Emett-Teller (BET) analysis, and H2–temperature-programmed reduction. X-ray diffraction analysis showed, for all samples, the formation of spinel phases MgAl2O4 and/or NiAl2O4 with crystallite sizes of 6–14 nm. H2–temperature-programmed reduction analysis showed reduction of two Ni2+ species (in octahedral and tetrahedral sites of a spinel structure) into metallic nickel known to be responsible for the methane activation. The 10 wt % Ni/MgAl2O4 impregnated catalysts exhibited the highest activity and stability in the partial oxidation of methane reaction, which led mainly to syngas (CO + H2) at 800 °C with a methane conversion close to the thermodynamic equilibrium (95%). A kinetic model revealed that the oxidation of methane occurs on a thin layer of the catalytic bed in which oxygen is consumed and is followed by the production of CO and H2 by methane steam reforming and water gas shift reactions.  相似文献   

7.
The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min−1 at 300–350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g−1 h−1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.  相似文献   

8.
Kinetics of methane conversion in a fluidized bed of microspherically grained nickel-alumina catalyst has been studied at pressures from 0.3 to 3.1 MPa. The rate equation shows that the reaction is inhibited by H2O.
0,3 3,1 . , .
  相似文献   

9.
Ni基催化剂上CH~4部分氧化反应的研究   总被引:1,自引:0,他引:1  
本文研究了NiO/SiO~2, NiO/Al~2O~3, NiO/La~2O~3催化剂的晶相组成及其还原性质。考察了催化剂的活性、选择性、稳定性。讨论了负载型催化剂稳定性较高的原因和发生部分氧化反应时CH~4的活化过程。  相似文献   

10.
采用等体积浸渍法制备了活性炭负载的具有脱氢活性的Pt-Ni双金属催化剂及相应的Pt单金属催化剂,并用X射线衍射、N2吸附-脱附和NH3-程序升温脱附对其进行了表征.在290°C下,研究了间歇反应条件下催化剂以过热液膜状态催化十氢化萘脱氢活性,考察了温度、浸渍顺序和Pt/Ni摩尔比对十氢化萘脱氢活性和萘产率的影响.结果表明,与单金属催化剂相比,Pt-Ni双金属催化剂上产氢效率显著提高.当Pt/Ni摩尔比为1:1,Pt首先浸渍时,得到的催化剂上脱氢转化率和萘产率最高.将实验结果与密度泛函理论计算的氢原子在不同催化表面的结合能关联证实,具有更强原子氢结合能的双金属表面具有更高的脱氢活性.  相似文献   

11.
天然气储量巨大,被广泛应用于发电和工业窑炉等.甲烷作为天然气中最主要的成分,是氢碳比最高的碳氢化合物,其温室效应显著.因此,不完全燃烧所引起的CH4排放,不仅导致能源浪费,同时也可造成环境污染.与传统火焰燃烧相比,CH4催化燃烧具有更高的燃烧效率,并可显著地减少大气污染物(CO,NOx和未完全燃烧的烃类)的排放.贵金属Pd催化剂对CH4催化燃烧表现出优异的催化性能,其中Pd颗粒的尺寸、Pd的化学状态、载体性质及其与Pd之间的相互作用等对其活性有显著影响.本文以不同温度(600,800,1000和1200℃)焙烧所得SnO2为载体,通过等体积浸渍法制备了Pd/SnO2催化剂,研究了SnO2焙烧温度对CH4催化燃烧性能的影响.结果表明,所制备的SnO2均为锐钛矿结构,并且随着SnO2焙烧温度的升高,晶型愈加完美,晶粒尺寸显著增大.催化剂中引入的Pd以高分散形式存在,CH4催化燃烧反应活性随着载体SnO2焙烧温度的升高而显著提高,其中Pd/SnO2(1200)表现出最高的CH4燃烧活性,起燃温度和最低全转化温度分别为265和390℃.在反应温度为300℃时,Pd/SnO2(1200)上甲烷的反应速率是Pd/SnO2(600)的36倍.XPS等结果表明,随着SnO2焙烧温度的升高,Pd的化学状态也有所差异:对于低温焙烧的SnO2(<800℃),Pd以Pd4+的形式进入到SnO2晶格内;随着焙烧温度的升高(>1000℃),Pd以Pd2+物种的形式存在于载体表面.结合活性评价结果推测,Pd的化学状态可能并非是影响催化剂活性的最关键因素.TEM等结果表明,Pd/SnO2(1000)上PdO的(101)晶面与载体SnO2的(101)晶面相近,分别为0.2641 nm和0.2638 nm.O2-TPD和CH4-TPR结果表明,Pd/SnO2(1200)催化剂上单位Pd原子上O2的脱附量是Pd/SnO2(600)的3倍,单位Pd原子上CH4的消耗量比催化剂Pd/SnO2(600)高出45%.因此,PdO和SnO2在构型上存在的晶面匹配可提高催化剂对O2的活化能力.综上所述,SnO2和贵金属之间的晶格匹配有利于氧在Pd-SnO2界面的活化,同时载体SnO2中的晶格氧亦可以通过"氧反溢流机理"补充到表面PdO/Pd上,从而增强催化剂对O2的吸附和活化能力,并提高CH4催化燃烧反应性能.升高SnO2的焙烧温度可强化SnO2和贵金属之间的晶格匹配,从而使催化剂活性随着SnO2焙烧温度升高而增大.  相似文献   

12.
The activity and selectivity of the methane-steam reaction has been studied in a gradientless reactor at atmospheric pressure and 700–850 °C. Differences were found in the course of the reaction on Pd relative to other metals, viz. Ni, Pt and Ru, and an interpretation of the results is proposed.
700–850°C. Pd , ., Ni, Pt Ru, .
  相似文献   

13.
The PtII (catalyst)+PtIV (oxidant) system with a deficiency of Cl ligands is active in the oxidative chlorination of alkanes not only in aqueous solutions but also in the SiO2-supported state. In heterogeneous as well as in homogeneous conditions, the reaction proceeds at 100°C through platinum-alkyl intermediates.
: PtII- PtIV- Cl-, , SiO2. , , 100° - .
  相似文献   

14.
采用共沉淀法制备CuZnAlOx(CZA)催化剂,通过浸渍法得到一系列不同硼(B)负载量的yB/CZA(y=0.28%、0.38%、0.73%、0.89%和4.10%,质量分数)催化剂,并将其用于甲醇水蒸气重整制氢反应。此外,为探究催化剂的构效关系,采用ICP、BET、SEM、N2O化学吸附、TEM、XRD、H2-TPR和XPS等手段对催化剂进行表征。结果表明,B引入主要影响催化剂的Cu分散性、还原性及Cu-B间相互作用,进而影响甲醇水蒸气重整制氢性能。其中,0.38B/CZA催化剂获得最高催化活性,这与其具有较高的Cu分散性与较强的Cu-B相互作用力有关;在反应温度为250℃,n(H2O):n(CH3OH)=3,空速为9000 mL/(g·h)时,CH3OH转化率达到93%,CO选择性仅有0.3%,且反应102 h后仍未失活。  相似文献   

15.
CH2O conversion over sodium-manganese oxide and oxychloride catalysts in methane dehydrodimerization have been studied under unsteady-state conditions at high temperatures (600–750 °C). It has been established that formaldehyde conversions produce deep oxidation (CO, CO2), condensation (C2H4, C2H6) and methanation products through CH3O formation and decomposition.
(600–750°C) CH2O - . , (CO, CO2) (C2H4, C2H6), , CH3O.
  相似文献   

16.
A series of nickel-exchanged catalysts based on ZSM-5, USY, and Mordenite zeolites has been prepared by the ionic exchange method. The NiZeol catalysts have been characterized by XRD and BET. The exchange levels and nickel contents of the catalysts have been determined by chemical analysis. The acidity of the zeolite supports has been investigated using NH3 adsorption microcalorimetry. The number of acidic sites was found to decrease according to the following sequence: HUSY > HZSM-5 > HMOR. The temperature programmed reduction studies showed that the most reducible catalyst is NiZSM-5. The Ni-exchanged zeolites presented good catalytic performance in the methane reforming by CO2. At a temperature of 650°C, CH4 conversions of 71 and 54% were achieved on NiUSY and NiZSM-5 respectively. At 400°C, CO2 FTIR adsorption has shown that CO2 decomposes into CO and oxygen on NiZSM-5 which explains its reactivity at such a low temperature, while no decomposition of this probe molecule was observed on the NiUSY catalyst. The catalytic performance was found to vary in the following sequence at 650°C: NiUSY > NiZSM-5 > NiMOR. Moreover, the catalytic performances were found to depend strongly on the CO2/CH4 ratio in the feed and were markedly improved for CO2/CH4 greater than 1.  相似文献   

17.
The nano ZrO2-supported copper-based catalysts for methane combustion were investigated by means of N2 adsorption, TEM, XRD, H2-TPR techniques and the test of methane oxidation. Two kinds of ZrO2 were used as support, one (ZrO2-1) was obtained from the commercial ZrO2 and the other (ZrO2-2) was issued from the thermal decomposition of zirconium nitrate. It was found that the CuO/ZrO2-2 catalyst was more active than CuO/ZrO2-1. N2 adsorption, H2-TPR and XRD measurements showed that larger surface area, better reduction property, presence of tetragonal ZrO2 and higher dispersion of active component for CuO/ZrO2-2 than that of CuO/ZrO2-1. These factors could be the dominating reasons for its higher activity for methane combustion.  相似文献   

18.
<正>The catalytic activity of Fe/ZSM-5 for the selective reduction of NO to N_2 with methane in the presence of excess O_2 was studied.Fe/ZSM-5 catalysts with various Fe loadings were prepared by impregnation method.It is well known that methane is inactive when Fe/ZSM-5 as the catalyst for the selective catalytic reduction(SCR) of NO with methane.However,this paper shows that when the content of Fe was about 0.5%,Fe/ZSM-5 showed higher catalytic activity and selectivity of methane,and put forward measurable activation for CH_4 is an important factor for the reaction of removal of NOx with CH_4.  相似文献   

19.
采用等体积浸渍法和共沉淀法制备了Ni催化剂,在固定床反应器上考察了Ni负载量、焙烧温度、反应温度等因素对乙二醇低温重整制氢反应活性和选择性的影响。应用X射线衍射、氮物理吸附、H2程序升温还原等技术对负载型Ni催化剂进行了表征。结果表明,共沉淀法制备的Ni/CeO2催化剂具有较小的NiO颗粒与CeO2载体颗粒粒径,催化活性较高。添加少量氧化钴到Ni/CeO2催化剂中可使H2收率达72.6%,EG转化率达93.1%。在CeO2中添加Al2O3能提高负载Ni催化剂的活性,乙二醇转化率达94.0%,H2收率达67.0%;但添加SiO2则使其活性明显变差。  相似文献   

20.
The homopolymerization of vinyl chloride and its copolymerization with ethylene over dibutyl ether–modified SiO2-supported Ziegler–Natta catalysts based on titanium and vanadium chlorides have been studied. The supported metal complexes are sufficiently active in the polymerization of vinyl chloride. Their activity depends on the catalyst composition and conditions of formation of the catalyst on the surface of the support. The chain structure of the resulting polyvinyl chloride (PVC) has been studied by NMR spectroscopy. The thermal properties of the synthesized PVC have been investigated by differential scanning calorimetry. The PVC obtained possesses enhanced thermal stability owing to the specific features of its chain structure. Vinyl chloride polymerization over the supported metalorganic catalyst proceeds mainly via a free-radical mechanism. Process conditions have been found for conducting the copolymerization of vinyl chloride with ethylene over supported metal complexes resulting in the formation of true statistical copolymers, which is confirmed by IR and NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号