首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide nanoparticle dynamically loaded with 8-hydroxyquinoline (nanometer TiO2-Oxine) was used as a solid-phase extractant for the preconcentration of trace amounts of aluminum(III) and chromium(III) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for preparing nanometer TiO2-Oxine were obtained. Also, the separation/preconcentration conditions of analytes, including the effects of the pH, the sample flow rate and the volume, the elution solution and the interfering ions on the recovery of the analytes were investigated. At pH 6.0, the adsorption capacity of nanometer TiO2-Oxine was found to be 5.23 mg g(-1) and 9.58 mg g(-1) for Al(III) and Cr(III), respectively. An enrichment factor of 50 was achieved by this method, and the detection limits (3sigma) for Al(III) and Cr(III) were 1.96 and 0.32 microg L(-1) respectively. The proposed method was applied for the determination of trace Al(III) and Cr(III) in biological samples and lake water with satisfactory results.  相似文献   

2.
Yu R  Hu Z  Ye M  Che J 《色谱》2012,30(4):409-413
建立了采用快速溶剂萃取-离子色谱同时测定塑料中三价铬和六价铬的方法。三价铬和六价铬分别以吡啶-2,6-二羧酸(PDCA)和1,5-二苯卡巴肼(DPC)作为络合剂在柱前和柱后进行衍生化,分别在紫外和可见波长下采用紫外检测器进行检测,灵敏度高,基体干扰小。本方法对三价铬和六价铬的检出限分别为5.0 μg/L和0.5 μg/L;分别在50~1000 μg/L和5.0~100 μg/L范围内呈现良好的线性关系,线性相关系数分别为0.9994和0.9998;三价铬和六价铬的回收率范围为90.7%~101.1%,相对标准偏差(RSD)为1.7%~4.4%。该方法分析速度快、灵敏度高、重现性好,可用于塑料中三价铬和六价铬的同时测定。  相似文献   

3.
A sensitive and selective method has been developed for the determination of chromium in water samples based on using cloud point extraction (CPE) preconcentration and determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Cr(III) ions with Brilliant Cresyl Blue (BCB) in the presence of non-ionic surfactant Triton X-114. Under the optimum conditions, the preconcentration of 50 mL of water sample in the presence of 0.5 g/L Triton X-114 and 1.2 × 10−5 M BCB permitted the detection of 0.42 μg/L chromium(III). The calibration graph was linear in the range of 1.5–70 μg/L, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Cr(III) in water samples and certified water samples. In addition, the developed CPE-FAAS method was also used for speciation of the inorganic chromium species after reduction of Cr(VI) to Cr(III) using a thiosulphate solution of 120 mg/L in the presence of Hg(II) ion as a stabilizer.  相似文献   

4.
A flotation method is proposed for the quantitative preconcentration and determination of total chromium by electrothermal atomic absorption spectrometry in fresh water samples, without previous reduction or oxidation of the chromium ion state. Hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate were used as precipitating collectors. The detection limit of the method is 0.01 g/L.  相似文献   

5.
A new method is presented for simultaneous preconcentration of trace Fe(III) and Cr(III) by using polyacrylic acid-alumina as a sorbent. The separation/preconcentration conditions of analytes were investigated, including effect of pH, flow rate, elution conditions, sample volume, and interfering ions. At pH 4, the maximum sorption capacities of Fe3+ and Cr3+ were 8.0 and 13.0 mg/g, respectively, by the column method. The linearity was maintained in the concentration range of 0.175-6.0 x 10(3) ng/mL for iron and 0.175-8.0 x 10(3) ng/mL for chromium in the original solution. The RSD values under optimum conditions were +/- 1.73 and +/- 1.28% for 2.0 microg/mL Fe and Cr, respectively. The preconcentration factor was 400 for both of the elements, and detection limits were 0.025 and 0.023 ng/mL for Fe and Cr in the original solutions. The proposed method was successfully applied to the determination of trace amounts of Fe and Cr in plant samples.  相似文献   

6.
Zhu G  Li S 《The Analyst》2001,126(8):1453-1455
A novel method for the separation and preconcentration of Cr(III)/Cr(VI) with Lemna minor and determination by slurry atomization electrothermal atomic absorption spectrometry (ETAAS) was developed. A sample solution was added to a polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 1.0, stirred for 8 min for selective absorption of Cr(III) and then centrifuged. The upper layer of solution was transferred into another polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 5.0, stirred for 12 min for adsorption of the residual Cr(VI) and centrifuged. The two residues in two centrifuge tubes were washed twice with water, 2 ml of agar solution added, stirred for 2 min, then two slurries were prepared and used for the determination of Cr(III) and Cr(VI) by ETAAS. Detection limits (3sigma) of 0.01 microg L(-1) for Cr(III) and 0.03 microg L(-1) for Cr(VI) were obtained. The relative standard deviation was 2.8% for Cr(III) and 3.3% for Cr(VI) at the 1 microg L(-1) level. The method was applied to the determination of Cr(III)/Cr(VI) in water samples. The analytical recoveries of Cr(III) and Cr(VI) added to samples were 97-102 and 96-103%, respectively.  相似文献   

7.
Application of Dowex 50W-X8 loaded with 2-amino-benzenethiol for preconcentration of total chromium (Cr(VI) and Cr(III)) in water samples and subsequent determination by inductively coupled plasma-atomic emission spectrometry was studied. The reagent 2-amino-benzenethiol loaded onto the resin effectively reduced Cr(VI) to Cr(III) and total chromium (both Cr(VI) and Cr(III)) formed chelate complex with the reagent in the Cr(III) valence state. Experimental parameters such as preconcentration time, solution flow rates, pH, and concentration of the eluent were optimized. The method has been applied for the determination of total chromium in seawater samples in the range of 0.1–200?µg?L?1. A detection limit of 0.3?µg?L?1 was achieved, and the relative standard deviation was about 5%.  相似文献   

8.
A simple and sensitive method has been developed for species selective determination of chromium(III) and chromium(VI) in water by electrothermal atomic absorption spectrometry. The procedure is based on selective absorption of Cr(III) on a cellulose micro column (pH 11, 0.5 mol L(-1) NaCl). Total chromium was subsequently determined after appropriate reduction of Cr(VI) to Cr(III). Recoveries of more than 97% were found. A concentration factor of 100 was achieved. The relative standard deviations (n=10) at the 40 ng L(-1) level for chromium(III) and chromium(VI) were 2.3% and 1.8% and corresponding limits of detection (based on 36) were 1.8 ng L(-1) and 5.1 ng L(-1), respectively. No interference effects have been observed from other investigated species and the method has been successfully applied to natural water samples.  相似文献   

9.
A very specific, selective, simple, and inexpensive procedure was developed for the speciation of CrVI and CrIII. This method is based on the quantitative extraction of chromate and CrIII (previously oxidized to CrVI) as a tetrabutylammonium-chromate ion-pair in methyl isobutyl ketone (MIBK), and then back extraction and preconcentration with an acidic diphenylcarbazide (DPC) solution. Back extraction was applied to achieve further preconcentration by a final factor of 20. The CrVI-DPC complex was determined in back-extract by a spectrophotometer at 548 nm. Under these extraction conditions, most of the probable concomitant cations and anions remained in the first inorganic phase. The calibration curve was linear up to 0.14 microg L(-1) of CrVI with a detection limit of 2.22 ng L(-1). The developed procedure was found to be suitable for the determination of the CrVI and CrIII species in various natural water samples with a relative standard deviation of better than 1.6%. The method was successfully applied to the speciation of chromium in spiked natural water samples, and also samples of effluent from a leather treatment plant.  相似文献   

10.
An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 degrees C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L(-1)). 140 mg of yeast and 2h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 microg L(-1). In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L(-1) thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L(-1), respectively, using ICP-MS, 7 and 0.9 microg L(-1) using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n=3) were in the 2-5% range at the tenth microg L(-1) level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 microg L(-1)). Corrected recoveries were in all cases close to 100%.  相似文献   

11.
A method for the preconcentration and speciation of chromium in seawater was developed. On-line preconcentration and determination were carried out by using inductively coupled plasma atomic emission spectrometry (ICP-AES) with dual mini-columns containing a chelating resin. In this system, Cr(III) was collected on the first column. The effluent containing residual chromium from the first column was collected on the second column after passing through a reduction-switching unit, in which the reducing agent was introduced, or not, for the reduction of Cr(VI) to Cr(lII). Cr(VI) was determined as the difference between the concentration of pre-reduced Cr(VI) and Cr(III) in the effluent from the first column. The detection limits for Cr(III) and Cr(VI) were 0.04 and 0.09 microg l(-1), respectively.  相似文献   

12.
A sensitive and simple method for determination of chromium species after separation and preconcentration by solid phase extraction (SPE) has been developed. For the determination of the total concentration of chromium in solution, Cr(VI) was efficiently reduced to Cr(III) by addition of hydroxylamine and Cr(III) was preconcentrated on a column of immobilised ferron on alumina. The adsorbed analyte was then eluted with 5?mL of hydrochloric acid and was determined by flame atomic absorption spectrometery. The speciation of chromium was affected by first passing the solution through an acidic alumina column which retained Cr(VI) and then Cr(III) was preconcentrated by immobilised ferron column and determined by FAAS. The concentration of Cr(VI) was determined from the difference of concentration of total chromium and Cr(III). The effect of pH, concentration of eluent, flow rate of sample and eluent solution, and foreign ions on the sorption of chromium (III) by immobilised ferron column was investigated. Under the optimised conditions the calibration curve was linear over the range of 2–400?µg?L?1 for 1000?mL preconcentration volume. The detection limit was 0.32?µg?L?1, the preconcentration factor was 400, and the relative standard deviation (%RSD) was 1.9% (at 10?µg?L?1; n?=?7). The method was successfully applied to the determination of chromium species in water samples and total chromium in standard alloys.  相似文献   

13.
Activated carbon was produced from tea-industry wastes (TIWAC) and employed as a low cost and effective solid phase material for the separation, preconcentration and speciation of chromium species without using a complexing agent, prior to determination by flame atomic absorption spectrometry (FAAS). The characterization of TIWAC was performed by utilizing several techniques such as Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis. The adsorption experiments were conducted in a batch adsorption technique. Under the experimental conditions, Cr(VI) adsorption amount was nearly equal to zero, however the adsorption percentage of Cr(III) was in the range of 95–100%. Therefore total chromium was determined after the reduction of Cr(VI) to Cr(III) and Cr(VI) was calculated by subtracting Cr(III) concentration from total chromium concentration. The suitable conditions for adsorption and speciation processes were evaluated in terms of pH, eluent type and volume, TIWAC concentration, adsorption and desorption contact time, etc. Adsorption capacity of TIWAC was found to be 61.0 mg g−1. The detection limit for Cr(III) was found to be 0.27 μg L−1 and the preconcentration factor was 50 for 200 mL of sample volume. The procedure was applied to the determination and speciation of chromium in stream, tap and sea water. Also, the proposed method was applied to total chromium preconcentration in microwave digested tobacco and dried eggplant samples with satisfactory results. The method was validated by analyzing certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) and the results were in good agreement with the certified values.  相似文献   

14.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

15.
The speciation of chromium(VI) and chromium(III) was investigated by using hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high performance liquid chromatography with ultraviolet detection. In this method, chromium(VI) and chromium(III) reacted with ammonium pyrrolidine dithiocarbamate to produce hydrophobic complexes. Subsequently, the complexes were first extracted into a thin layer of organic solvent (n‐dodecane) present in the pores of a porous hollow fiber, and then into a μL volume of an organic acceptor (methanol) located inside the lumen of the hollow fiber. Then, the extracting organic phase was injected into the separation column of the high‐performance liquid chromatograph for the analysis of both chromium species. Effective parameters on extraction were optimized using one‐variable‐at‐a‐time method and central composite design. Under optimized conditions, a linear range of 0.25–100 and 0.5–100 μg/L (R 2 > 0.998), the limits of detection of (S/N = 3) 0.08 and 0.1 μg/L and a preconcentration factor of 625 and 556 were achieved for chromium(VI) and chromium(III), respectively. The method was successfully applied to the speciation and determination of chromium species in different water samples and satisfactory results were obtained.  相似文献   

16.
A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H2SO4 and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N = 10) was found 0.7 μg L−1. The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values.  相似文献   

17.
A new, sensitive and robust time-based flow injection (FI) method for on-line preconcentration and determination of ultra trace amounts of chromium(VI) by flame atomic absorption spectrometry (FAAS) has been elaborated. The sample is initially mixed on-line with ammonium pyrrolidine dithiocarbamate (APDC) and the Cr(VI)-PDC chelate is absorbed quantitatively on a mini-column packed with polytetrafluoroethylene (PTFE) turnings at a pH range 0.8-1.4. The complex is subsequently eluted with isobutyl methyl ketone (IBMK) and introduced directly into the nebulizer-burner system. The optimized system offered improved performance characteristics, with unlimited lifetime of the proposed column. The enhancement factor was 80, for a 3-min preconcentration time and the sample frequency was 18 h(-1). The calibration curve was linear over the concentration range 1-40 mug l(-1) with a detection limit of c(L)=0.8 mug l(-1) and a relative standard deviation of s(r)=3.2%, at the 20 mug l(-1) level. The proposed method was evaluated by analyzing samples of certified and spiked water, and it was applied to the analysis of natural water samples and sediments.  相似文献   

18.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

19.
A method is described that utilizes direct current plasma atomic emission spectrometry as an element-selective method of detection for ion chromatographic determination of chromium(III) and chromium(VI) species. The eluting chromium-containing species are detected on the basis of the atomic emission of chromium without any species conversion. Both anion and cation separator columns give similar results when used with varying sample matrices. By employing an on-column preconcentration procedure, the detectable concentrations of the chromium species are reduced to less than 1.0 ppb. This method is applied to the determination of chromium species in human serum, natural water, and industrial process stream samples.  相似文献   

20.
Bağ H  Türker AR  Lale M  Tunçeli A 《Talanta》2000,51(5):895-902
A rapid, sensitive and accurate method for the separation, preconcentration and determination of Cr(III) and Cr(VI) in water samples is described. Chromium species can be separated by biosorption on Saccharomyces cerevisiae immobilized on sepiolite and determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for separation and preconcentration (pH, bed height, flow rate and volume of sample solution) were evaluated. Recovery of the chromium was 96.3+/-0.2% at 95% confidence level. The breakthrough capacity of the adsorbent was found as 228 mumol g(-1) for Cr(III). The proposed method was applied successfully to the determination of Cr(III) and Cr(VI) in spiked and river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号