首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let ${{\varphi}}$ be an analytic self-map of the open unit disk ${{\mathbb{D}}}$ in the complex plane ${{\mathbb{C}, H(\mathbb{D})}}$ the space of complex-valued analytic functions on ${{\mathbb{D}}}$ , and let u be a fixed function in ${{H(\mathbb{D})}}$ . The weighted composition operator is defined by $$(uC_{\varphi}f)(z) = u(z)f({\varphi}(z)), \quad z \in \mathbb{D}, f \in H(\mathbb{D}).$$ In this paper, we study the boundedness and the compactness of the weighted composition operators from the minimal Möbius invariant space into the Bloch space and the little Bloch space.  相似文献   

2.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

3.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

4.
5.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

6.
The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a ${Y\in K}$ such that ${X\subseteq Y}$ and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an ${\mathbb {R}}$ –complete measurable cardinal, then the real core model ${K(\mathbb {R})}$ is a “very good approximation” to the universe of sets V; that is, ${K(\mathbb {R})}$ and V have exactly the same sets of reals and for any set of ordinals X with ${|{X}|\ge\Theta}$ , there is a ${Y\in K(\mathbb {R})}$ such that ${X\subseteq Y}$ and |X| = |Y|. Here ${\mathbb {R}}$ is the set of reals and ${\Theta}$ is the supremum of the ordinals which are the surjective image of ${\mathbb {R}}$ .  相似文献   

7.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

8.
9.
In this paper, we construct associative subalgebras ${{L_{2}}{n}(\mathbb{R})}$ of the real ${2^{n} \times 2^{n}}$ matrix algebra ${{M_{2}}{n}(\mathbb{R})}$ , which is isomorphic to the real Clifford algebra ${C \ell_{0},n}$ for every ${n \in N}$ .  相似文献   

10.
11.
In this paper we prove the equivalence of the frame property and the closedness for a weighted shift-invariant space $$ V^p_\mu(\Phi) = \left\{\sum \limits^{r}_{i=1} \sum \limits_{j \in \mathbb{Z}^d} c_{i}(j)\phi_{i}(\cdot-j)\left \vert {\{c_{i}(j)\}}_{j \in \mathbb{Z}^{d}} \in {\ell_{\mu}^{p}}\right.\right\}, \quad p \in [1, \infty], $$ which corresponds to ${{\Phi = \Phi^r = (\phi_1, \phi_2, . . . , \phi_r)^T \in (W^{1}_\omega)^r}}$ . We, also, construct a sequence Φ2k+1 and the sequence of spaces ${{V^{p}_{\mu} (\Phi^{2k+1})}}$ , ${k \in {\mathbb N}}$ , on ${\mathbb R}$ , with the useful properties in sampling, approximations and stability.  相似文献   

12.
Extending a result of Meyer and Reisner (Monatsh Math 125:219–227, 1998), we prove that if ${g: \mathbb{R}\to \mathbb{R}_+}$ is a function which is concave on its support, then for every m > 0 and every ${z\in\mathbb{R}}$ such that g(z) > 0, one has $$ \int\limits_{\mathbb{R}} g(x)^mdx\int\limits_{\mathbb{R}} (g^{*z}(y))^m dy\ge \frac{(m+2)^{m+2}}{(m+1)^{m+3}},$$ where for ${y\in \mathbb{R}}$ , ${g^{*z}(y)=\inf_x \frac{(1-(x-z)y)_+}{g(x)}}$ . It is shown how this inequality is related to a special case of Mahler’s conjecture (or inverse Santaló inequality) for convex bodies. The same ideas are applied to give a new (and simple) proof of the exact estimate of the functional inverse Santaló inequality in dimension 1 given in Fradelizi and Meyer (Adv Math 218:1430–1452, 2008). Namely, if ${\phi:\mathbb{R}\to\mathbb{R}\cup\{+\infty\}}$ is a convex function such that ${0 < \int e^{-\phi} < +\infty}$ then, for every ${z\in\mathbb{R}}$ such that ${\phi(z) < +\infty}$ , one has $$ \int\limits_{\mathbb{R}}e^{-\phi}\int\limits_{\mathbb{R}} e^{-\mathcal{L}^z\phi}\ge e,$$ where ${\mathcal {L}^z\phi}$ is the Legendre transform of ${\phi}$ with respect to z.  相似文献   

13.
14.
15.
Tensor data are becoming important recently in various application fields. In this paper, we consider the maximal rank problem of 3-tensors and extend Atkinson and Stephens’ and Atkinson and Lloyd’s results over the real number field. We also prove the assertion of Atkinson and Stephens: ${{\rm max.rank}_{\mathbb{R}}(m,n,p) \leq m+\lfloor p/2\rfloor n}$ , ${{\rm max.rank}_{\mathbb{R}}(n,n,p) \leq (p+1)n/2}$ if p is even, ${{\rm max.rank}_{\mathbb{F}}(n,n,3)\leq 2n-1}$ if ${\mathbb{F}=\mathbb{C}}$ or n is odd, and ${{\rm max.rank}_{\mathbb{F}}(m,n,3)\leq m+n-1}$ if m < n where ${\mathbb{F}}$ stands for ${\mathbb{R}}$ or ${\mathbb{C}}$ .  相似文献   

16.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

17.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

18.
Let T be a bounded linear operator on an infinite dimensional complex Hilbert space. In this paper, we introduce the new class, denoted ${{\mathcal{QP}}}$ , of operators satisfying ${{\|T^{2}x\|^{2}\leq \|T^{3}x\|\|Tx\|}}$ for all ${{x \in \mathcal{H}}}$ . This class includes the classes of paranormal operators and quasi-class A operators. We prove basic structural properties of these operators. Using these results, we also prove that if E is the Riesz idempotent for a nonzero isolated point λ0 of the spectrum of ${{T \in \mathcal{QP}}}$ , then E is self-adjoint if and only if ${{N(T-\lambda_{0}) \subseteq N(T^{*}-\overline{\lambda}_{0})}}$ .  相似文献   

19.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

20.
Let $ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $ be a stationary sequence of real random variables with E ξ 0 = 0 and infinite variance. Furthermore, assume that $ {{\left( {{c_n}} \right)}_{{n\in \mathbb{Z}}}} $ is a sequence of real numbers and $ {X_n}=\sum {_{{j\in \mathbb{Z}}}{c_j}{\xi_{n-j }}} $ is a moving average processes driven by $ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $ . By using a decomposition of the moving average processes, a central limit theorem for the partial sums $ \sum\nolimits_{k=1}^n {{X_k}} $ is established. As applications, we obtain some central limit theorems for stationary dependent sequences $ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $ , such as associated sequence, martingale difference, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号