共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscibility and morphology of poly(ethylene 2,6-naphthalate)/poly(trimethylene terephthalate)/poly(ether imide) (PEN/PTT/PEI)
blends were investigated by using a differential scanning calorimeter (DSC), optical microscopy (OM), wide-angle X-ray diffraction
(WAXD), and proton nuclear magnetic resonance (1H-NMR). In the ternary blends, OM and DSC results indicated immiscible properties for polyester-rich compositions of PEN/PTT/PEI
blends, but all compositions of the ternary blends were phase homogeneous after heat treatment at 300 °C for more than 30 min.
An amorphous blend with a single T
g was obtained in the final state, when samples were annealed at 300 °C. Experimental results from 1H-NMR identified the production of PEN/PTT copolymers by so-called “transesterification”. The influence of transesterification
on the behaviors of glass transition and crystallization was discussed in detail. Study results identified that a random copolymer
promoted the miscibility of the ternary blends. The critical block lengths for both PEN and PTT hindered the formation of
crystals in the ternary blends. Finally, the transesterification product of PEN/PTT blends, ENTT, was blended with PEI. The
results for DSC and OM demonstrated the miscibility of the ENTT/PEI blends. 相似文献
2.
A. Zabaleta 《European Polymer Journal》2009,45(2):466-473
Rubber toughening of poly(ether imide) (PEI) has been elusive up to now due to the high processing temperature of PEI, which leads to degradation of the rubber. In this study, by profiting from the miscibility between PEI and poly(butylene terephthalate) (PBT), and the low Tg of PBT, we prepared a blend by melt extrusion with 20 wt% PBT in an attempt to render it toughenable by decreasing its Tg and processing temperature. The PEI-rich blend was subsequently mixed with maleic anhydride (0.9 wt%) grafted poly(ethylene-octene) copolymer (mPEO) up to 30 wt%. The decrease in Tg and processing temperature resulted in no observable degradation of the mPEO, and to the formation of a homogeneous morphology of rubber particles with a fine particle size, indicating that compatibilization was achieved. Upon rubber addition, stiffness decreased, while a very large toughness increase occurred with only 15% mPEO (impact strength more than 10-fold that of the PEI-PBT matrix). Upon observation of the fracture surface, the increase in impact strength was attributed partially to the cavitation and debonding of the rubber particles, and mostly to the deformation and yielding of the PEI-PBT matrix. 相似文献
3.
Zeynep Mutlu Mayank Jain Sung Ho Yook Mukerrem Cakmak 《Journal of polymer science. Part A, Polymer chemistry》2021,59(18):2045-2056
Mechano-optical behavior and related structural evolution during uniaxial stretching of melt miscible poly (ethylene terephthalate) (PET)/poly (ether imide) (PEI) blends were studied near their glass transition temperature using an instrumented machine that measures true stress, true strain and spectral birefringence simultaneously. Stretching from amorphous state, two distinct stress-optical regimes were observed at temperatures between Tg and Tcc (cold crystallization). Near Tg, a typical photoelastic behavior persists until a critical temperature above which temperature independent initial stress optical behavior is observed. At those temperatures above Tg, where glassy behavior is observed, decreasing stretching rate was also found to eliminate this glassy photo elastic regime leading to the observation of a linear initial stress optical behavior that becomes temperature independent as expected from linear stress optical rule. Increasing PEI concentration in the blends suppresses crystallizability and increases temperature at which initial elastic region disappears giving way to pure liquid behavior where linear stress optical behavior is observed. This is attributed to the increase and broadening of the glass transition temperature with the addition of noncrystallizable PEI. In PET/PEI blends, the stress-optical coefficient (SOC), determined in a linear stress optical regime, was found to increase linearly with the increase in PEI concentration. 相似文献
4.
The shrinkage of commercial oriented poly(ethylene terephthalate) filaments was studied within the framework of the kinetic theory of rubberlike elasticity. Previous workers had found that the shrinkage and optical behavior of amorphous polymers could be satisfactorily explained in terms of this theory. Such an analysis is now applied to semicrystalline samples of moderate and high draw ratios (from 2× to 6×). It was found in this work that the thermal shrinkage force behavior as well as the optical anisotropy as a function of stretch can be explained in terms of the theory of rubberlike elasticity, if the following reasonable assumption is made: the average number of statistical segments per network chain in the noncrosslinked sample increases as a function of the draw ratio. A possible mechanism for such behavior is the relaxation of some of the chain entaglements due to the strain imposed externally on the fiber. 相似文献
5.
Blends of PBT with PET or PC were studied by X-ray diffraction and DSC for different conditions of crystallization. PBT and PET crystallize very similarly, though they are recognized as partially compatible in the melt. In the PBT/PC blends X-ray diffraction examinations show crystallization of PC after 4 h of annealing. In the melt, both components are compatible. Tg-calculations indicate a plasticizing effect. In both kinds of blends, PBT crystallizes faster than PC or PET. Fast crystallization processes were examined by X-ray diffraction measurements with synchrotron radiation. 相似文献
6.
Summary Small angle X-ray studies and density measurements were carried out on isotropic PET and PBT samples. PET samples were crystallized between 60 and 260 °C, and PBT between 60 and 225 °C. The aim of these studies was to investigate the dependence of the amorphous density, the degree of crystallinity and the average transmission path through the regions of the two-phase system on the crystallization temperature. It could be shown that PET and PBT crystallize with sharp phase boundaries.Since for the evaluation of the amorphous density the knowledge the exact crystal density is very important, additional measurements of the wide angle X-ray behaviour were made. Both the crystal and the amorphous densities of PET and PBT show specific differences dependent on the crystallization temperature, which can be explained by the higher mobility of the PBT chain.The degrees of crystallization, evaluated with the individual values of crystal density and amorphous density determined on each sample, are principally higher than those calculated with the usually used values of crystal and amorphous density. Investigations of the background scattering have shown that both the specific amorphous and specific crystalline scattering background are constant.For PET and PBT the average transmission path through the amporhous regions
firstly decreases with increasing crystallization temperature. This can be explained by new formation of crystallites. At higher crystallization temperatures
increases. The average transmission path through the crystalline regions
increases over the whole range of crystallization temperature.
With 22 figures and 3 tables 相似文献
Zusammenfassung An isotropen PET- und PBT-Proben, kristallisiert bei Temperaturen zwischen 60 und 260 °C bzw. 60 und 225 °C wurden Röntgenkleinwinkel- und Dichtemessungen durchgeführt, mit dem Ziel, die amorphe Dichte, die Volumenanteile und die mittleren Durchschußlängen durch die Phasen in Abhängigkeit von der Kristallisationstemperatur zu bestimmen.Da für die Bestimmung der amorphen Dichte die Kenntnis der genauen Kristalldichte sehr wichtig ist, wurden zusätzliche Röntgenweitwinkelmessungen durchgeführt.Es konnte gezeigt werden, daß sowohl PBT als auch PET mit scharfen Phasengrenzen kristallisiert.Die Kristalldichte und die amorphe Dichte von PET bzw. PBT zeigen in Abhängigkeit von der Kristallisations-temperatur spezifische Unterschiede, die durch die höhere Beweglichkeit der PBT-Kette erklärt werden können.Die Kristallisationsgrade, die mit den von uns bestimmten Kristalldichten und amorphen Dichten ermittelt wurden, liegen generell höher als die mit den bekannten Werten von c und a berechneten. Untersuchungen des Streuuntergrundes zeigten, daß sowohl der spezifische amorphe als auch der spezifische kristalline Streuuntergrund konstant ist.Bei PET und PBT nehmen die mittleren Durchschußlängen durch die amorphen Phasenanteile bei geringen Kristallisationstemperaturen ab, was durch die Neubildung von Kristalliten erklärt wird, und nehmen bei höheren Kristallisationstemperaturen wieder zu.Die mittleren Durchschußlängen durch die kristallinen Phasenanteile nehmen über den gesamten Temperaturbereich zu.
With 22 figures and 3 tables 相似文献
7.
K. -H. Illers 《Colloid and polymer science》1980,258(2):117-124
Summary Concerning the relation between the experimental heat of fusion H* and the specific volumev of PETP a considerable uncertainty exists in literature. For PBTP obviously no data have been reported. The present paper reports H* andv measurements for undrawn PETP and PBTP samples which have been crystallized from the glassy state or from the melt at different temperatures for different periods of time.For PETP a linear relation is obtained: H* = 1411–1886v (Jg–1). Published values for the specific volumev
c of the PETP crystal range from 0.660 to 0.687 cm3g–1. Ifv
c = 0.660 cm3g–1 is accepted, a heat of fusion M
m = 166 Jg–1 is obtained for the PETP crystal.For PBTP also a linear relation is found: H* = 1296–1628v (Jg–1). Withv
c = 0.71 cm3g–1 one obtains H
M = 140 Jg–1 as the heat of fusion of the PBTP crystal. The specific volumev
a of amorphous PBTP (H* = 0) is 0.796 cm3g–1 which is much higher than the hitherto used values of 0.781–0.782 cm3g–1. The reason for this difference is thatv
a cannot directly be measured, because the low quasi-static glass temperature of 15 °C enables quenched PBTP to undergo cold crystallization at 20 °C.
With 7 figures and 3 tables
Dedicated to Professor Dr. Matthias Seefelder on the occasion of his 60th birthday 相似文献
Zusammenfassung Hinsichtlich des Zusammenhangs zwischen experimenteller Schmelzwärme H* und spezifischem Volumenv von PETP bestehen in der Literatur beträchtliche Diskrepanzen. Für PBTP wurden bislang offensichtlich keine Ergebnisse veröffentlicht. In der vorliegenden Arbeit werden Messungen von H* undv für unverstreckte PETP- und PBTP-Proben mitgeteilt, die unterschiedlich lange bei ver-schiedenen Temperaturen aus dem Glaszustand oder aus der Schmelze kristallisiert wurden.Für PETP ergibt sich die lineare Beziehung: H* = 1411–1886v (Jg–1). Literaturwerte für das spezifische Volumenv c des PETP-Kristalls schwanken zwischen 0.660 und 0.687 cm3g–1. Nimmt manv c = 0.660 cm3g–1 als richtig an, so erhält man als Schmelzwärme des PETP-Kristalls H M = 166 Jg–1 = 32 kJ mole–1.Auch für PBTP erhält man eine lineare Abhängigkeit: H* = 1296–1628v. Mitv c = 0.71 cm3g–1 ergibt sich als Schmelzwärme des PBTP-Kristalls H M = 140 Jg–1 = 31 kJ mole–1. Das spezifische Volumen des amorphen PBTP beträgt a = 0.796 cm3g–1 und ist erheblich größer als der bisher angenommene Wert von 0.781 cm3g–1. Die Ursache fÜr diese Diskrepanz liegt darin begündet, daßv a nicht direkt gemessen werden kann, weil wegen der niedrigen quasi-statischen Glastemperatur von 15°C bei abgeschrecktem PBTP die Kaltkristallisation bei 20°C bereits einsetzt.
With 7 figures and 3 tables
Dedicated to Professor Dr. Matthias Seefelder on the occasion of his 60th birthday 相似文献
8.
Behaviours of drawn semi-crystalline poly(ethylene terephthalate) films are investigated by DSC, X-ray diffraction and birefringence measurements. The comparison of the different results confirms the coexistence of two structures into the amorphous part of the material: a completely disordered amorphous phase and a mesomorphic amorphous one. Moreover, for the strongest draw ratio, the calorimetric results show that the drawing effect on the strain induced crystalline structure proceeds by a better orientation of this structure rather than by nucleation and growth of new oriented crystallites. 相似文献
9.
Dae Woo Ihm Soo Young Park Cheol Gyu Chang Yoon Sung Kim Hwan Kwang Lee 《Journal of polymer science. Part A, Polymer chemistry》1996,34(14):2841-2850
The effects of transesterification on the miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) were studied. Blends were obtained by solution precipitation at room temperature to avoid transesterification during blend preparation. The physical blends and transesterified products were analyzed by wide-angle x-ray scattering, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. It was found that the physical blends are immiscible and when the extent of transesterification reaches 50% of the completely randomized state, independent of blend composition, the blends are not crystallizable and show a single glass transition temperature between those of starting polymers. The interchange reactions were significantly influenced by annealing temperature and time but negligibly by blend composition. © 1996 John Wiley & Sons, Inc. 相似文献
10.
Munehisa Yasuniwa Shinsuke Tsubakihara Takahiro Murakami 《Journal of Polymer Science.Polymer Physics》2000,38(1):262-272
Pressure effect on the melting behavior of poly(butylene terephthalate) (PBT) and poly(hexamethylene terephthalate) (PHT) was studied by high‐pressure DTA (HP‐DTA) up to 320 and 530 MPa, respectively. Cooling rate dependence on the DSC melting curves of the samples cooled from the melt was shown at atmospheric pressure. Stable and metastable samples were prepared by cooling from the melt at low and normal cooling rates, respectively. DTA melting curves for the stable samples showed a single peak, and the peak profile did not change up to high pressure. Phase diagrams for PBT and PHT were newly determined. Fitting curves of melting temperature (Tm) versus pressure expressed by quadratic equation were obtained. Pressure coefficients of Tm at atmospheric pressure, dTm/dp, of PBT and PHT were 37 and 33 K/100 MPa, respectively. HP‐DTA curves of the metastable PBT showed double melting peaks up to about 70 MPa. In contrast, PHT showed them over the whole pressure region. HP‐DTA of stable poly(ethylene terephthalate) (PET) was also carried out up to 200 MPa, and the phase diagram for PET was determined. dTm/dp for PET was 49 K/100 MPa. dTm/dp increased linearly with reciprocal number of ethylene unit. The decrease of dTm/dp for poly(alkylene terephthalate) with increasing a segmental fraction of an alkyl group in a whole molecule is explained by the increase of entropy of fusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 262–272, 2000 相似文献
11.
12.
Qin Lin Serkan Unal Ann R. Fornof Yuping Wei Huimin Li R. Scott Armentrout Timothy E. Long 《Macromolecular Symposia》2003,199(1):163-172
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films. 相似文献
13.
Susheng Tan Aihua Su Weihua Li Enle Zhou 《Journal of Polymer Science.Polymer Physics》2000,38(1):53-60
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000 相似文献
14.
A kinetic analysis of the gauche-trans isomerization in semicrystalline poly(ethylene terephthalate)
A series of kinetic measurements using FT-IR have been carried out in order to clarify the mechanism of the gauche-trans isomerization process and the time-temperature-transformation relationships in poly(ethylene terephthalate). Two-stage isomerization isotherms are distinguished on the logarithmic scale of annealing time: a primary transformation stage with an activation energy of 40 kcal/mol characterized by a sigmoidal curve, followed by a linear secondary process. The activation energies of the secondary transformation obey an equation of the Arrhenius type InaT = B(1/T ? 1/Tm) where 160 < T < 260°C ≈ Tm and can be used to describe the effects of annealing time and temperature on the isomerization process of PET in the secondary transformation region. On the basis of these analyses, the morphology and microstructure of PET in these temperature regimes of the isomerization process are proposed. 相似文献
15.
Fully miscible poly(ether imide) (PEI)/poly(trimethylene terephthalate) (PTT) blends were obtained by melt mixing in an extruder followed by injection moulding. The viscosity of PEI, represented by the pressure at the extruder output, almost halved upon the addition of only 10% PTT, allowing the use of PEI in applications where either complex parts or thin sections must be moulded. The modulus of elasticity showed a synergistic behaviour which was absolute (modulus higher than that of any of the two components) in the blend with 10% PTT. This was attributed mainly to the decrease in specific volume upon blending. The additional absolute synergism in the yield stress of PEI‐rich blends and their ductile nature depict a set of properties that make these new materials attractive in a number of new applications. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
Miscibility and Crystallization in Binary Crystalline Blends of Poly(butylene terephthalate) with Poly(butylene terephthalate-e-caprolactone) 下载免费PDF全文
Poly(butylene terephthalate)/poly(butylene terephthalate-e-caprolactone) is a new A/AxB1-x binary crystalline blend with intra-molecular repulsion interaction. Using the mean-field binary interaction model, the value of interaction parameter between the butylene terephthalate and caprolactone structural unit was first reported to be 0.305. This blend exhibited different crystallization behavior from a typical homopolymer/copolymer blend, which was carefully investigated by di?erential scanning calorimetry. It was found that poly(butylene terephthalate-e-caprolactone) copolymers have a great effect on the pure poly(butylene terephthalate) chain mobility and poly(butylene terephthalate) crystalline lattice packing. In the meantime, the crystallization of butylene terephthalate segments in copolymers was restricted by the previously formed poly(butylene terephthalate) crystallites. The two constituents for blending can not form a co-crystal in the range of composition even if they have the same butylene terephthalate unit. It can be concluded that longersegments in a copolymer would be beneficial for the formation of a co-crystal in blends. 相似文献
17.
Nonelastic deformation of semicrystalline poly(butylene terephtalate) (PBT) was investigated by calorimetric measurements and strain‐recovery tests. Differential scanning calorimetry on PBT specimens deformed both below and above their glass‐transition temperature (Tg ≈ 50 °C) showed the presence of a broad exothermal peak whose area represents the energy released for the nonelastic strain recovery. This energy became more and more pronounced as the strain level increased, and it decreased as the deformation temperature increased, even if a significant contribution was detected on specimens deformed at temperatures much higher than Tg. For two temperature conditions (21 and 100 °C), strain‐recovery master curves were built showing the following two distinct deformation components: one recoverable with time and another one irreversible, this latter one arising from relatively low levels of strain. The recoverable component can be erased by heating the material at temperatures much higher than its Tg, close to the onset of the melting process. On the other hand, the irreversible strain component does not recover even if the material is brought close to the onset of the crystals melting. The shift factor for the strain‐recovery master curves was compared with the shift factor for the construction of the dynamic storage modulus master curve obtained in the linear viscoelastic regime (small strain). © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 236–243, 2002 相似文献
18.
B. Jacques J. Devaux R. Legras E. Nield 《Journal of polymer science. Part A, Polymer chemistry》1996,34(7):1189-1194
The occurrence of ester-interchange reactions during PET/PBT blend processing has been confirmed by 13C-NMR measurements. The limitations of the method for precise quantification of the extent of reaction between high molecular weight polyester blends have also been pointed out. Titanium alkoxide has been confirmed as an efficient catalyst, and, within experimental precision, the stabilizing effect of triphenyl phosphite addition has been demonstrated. © 1996 John Wiley & Sons, Inc. 相似文献
19.
We detail the melting behavior of poly(ether ether ketone) (PEEK) and investigate its melting behavior in miscible blends with poly(ether imide) (PEI). The determination of the equilibrium melting point (Tm0) of PEEK is discussed by considering its inhomogeneous morphology. Tm0 is obtained by a long extrapolation of a Hoffman–Weeks plot to 384°C. Hindrance of PEEK crystal reorganization induced by PEI during heating is observed over the blend composition investigated (20–75 wt % PEEK). This behavior is correlated with the incorporation of PEI in the interlamellar zones of PEEK crystals. The interaction parameter χ of PEEK/PEI blends is estimated by the equilibrium melting point depression. This gives the interaction density B = ?1.2 cal/cm3, and x = ?0.40 at 400°C. © 1993 John Wiley & Sons, Inc. 相似文献