首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocycloaddition of furo[3,2-c]pyridin-4(5H)-one (1) and its N-methyl derivative (1-Me) to acrylonitrile has been studied. The structures of the photoadducts isolated by column chromatography were determined on the basis of the nuclear magnetic resonance spectroscopy. The cycloaddition of 1 afforded an adduct 2 at the carbonyl oxygen and four possible isomers 3a, 3b, 3c and 3d of cyclobutane-fused adduct at the 6- and 7-position of 1 , and the addition of 1-Me the N-methyl derivatives 3a-Me, 3b-Me, 3c-Me and 3d-Me.  相似文献   

2.
The parent framework of furo[2,3-c]pyridine has been synthesized. 3-Furoic acid chloride ( 2 ) was reduced with bis(triphenylphosphine) copper(1) tetrahydroborate to afford 3-furaldehyde ( 3 ) which was condensed with malonic acid to give β-(3-furyl)acrylic acid ( 4 ). The acrylic acid 4 was converted to the acid azide ( 5 ), which in turn was cyclized to give furo[2,3-c]pyridin-7(6H)-one ( 6 ) by heating at 180° in diphenylmethane. The pyridone 6 was chlorinated with phosphorus oxychloride, followed by reduction with zinc and acetic acid to give furo[2,3-c]pyridine ( 8 ).  相似文献   

3.
In order to reveal the reactivities of furopyridines, we undertook bromination and nitration of four furopyridines ( 1, 2, 3 and 4 ) whose chemical properties had been almost unknown. Bromination of 1, 2, 3 and 4 gave the corresponding trans-2,3-dibromo-2,3-dihydro derivatives 6, 8, 10 and 12 , respectively, which were converted to 3-bromofuropyridines 7, 9, 11 and 13 by treatment with sodium hydroxide in aqueous methanol. Nitration of 1 with a mixture of fuming nitric acid and sulfuric acid afforded a mixture of addition products 14a, 14b and 14c and 2-nitro derivative 15 . Both 14a and 14b were easily converted to 15 by treatment with sodium bicarbonate. Compound 2 was nitrated to give a mixture of cis- and trans-2-nitro-3-hydroxy-2,3-dihydro derivative 16a and 16b and 2-nitro derivative 17 . The cis isomer 16a was transformed to the trans isomer 16b by refluxing on silica gel in ethyl acetate. Compound 16b was dehydrated with acetic anhydride to give 17 . Nitration of 3 gave a nitrolic acid derivative 20 . Nitration of 4 gave a mixture of 2-nitro derivative 22 and 3-(trinitromethyl)pyridin-4-ol ( 23 ). The structures of 20 and 23 were established by single crystal X-ray analysis. The differences of behavior observed in these reactions are discussed in connection with the results of the determination of pKa values and the relative reactivities of deuteriodeprotonation of these furopyridines.  相似文献   

4.
The preparation of 2-aminomethyl- 3a-d , 2-acetamidomethyl- 4a-d , 2-N,N-dimethylaminomethyl- 5a-d , 2-(1-hydroxy-2-nitroethyl)- 6a-d , 2-(1-hydroxyl-2-aminoethyl)- 7a-d and 2-(1-hydroxy-2-N,N-dimethylaminoethyl)- 8b-d derivatives of furo[2,3-b]-, furo[3,2-b]-, furo[2,3-c]- and furo[3,2-c]pyridine is described.  相似文献   

5.
The: title compounds were prepared from Michael adducts, obtained from acetoacetic esters and trans-3-hexene-2,5-dione, and from the corresponding dehydration products, by direct cyclization to oxygen rings or by reaction with ammonia (or methylamine) to give nitrogen rings.  相似文献   

6.
Synthetic approaches to the preparation of perhydrofuro[2,3-c]pyridin-2-one derivatives as analogs of pilocarpine are reported. Derivatives of the desired ring system were obtained from iodolactonization of the appropriate tetrahydropyridyl esters.  相似文献   

7.
Reaction of ethyl 3-ethoxycarbonylmethoxyfuropyridine-2-carboxylates 2a-2d with sodium ethoxide afforded 3-ethoxy derivatives 3a-3d which converted to 3-ethoxyfuropyridines 5a-5d by hydrolysis and decarboxylation of the ester group. Vilsmeier reaction of 5a and 5b gave 2-formyl-3-ethoxy derivatives 6a and 6b and 2-formyl-3-chloro derivatives 7a and 7b , while 5c and 5d did not give any formyl compound. Bromination of 3-ethoxyfuropyridines with 1 equivalent mole of bromine gave 2-bromo-3-ethoxyfuropyridines 9a-9d , whereas reaction with 3 equivalents of bromine yielded 2,2-dibromo-3,3-diethoxy-2,3-dihydrofuropyridines ( 10a and 10b ) and/or 2-bromo-3,3-diethoxy-2,3-dihydrofuropyridines 11b , 11c and 11d . Treatment of compounds 5a-5d with n-butyllithium in hexane-tetrahydrofuran at ?70° and subsequent addition of N,N-dimethylformamide yielded 2-formyl derivatives 6a-6d .  相似文献   

8.
This paper describes the preparation and hydrolysis of 2-cyano and 3-cyano derivatives of furo[3,2-b]-, furo[2,3-c]- and furo[3,2-c]pyridine. Treatment of furopyridines 1a , 1b and 1c with n-butyllithium in hexane-tetrahydrofuran at -70° and subsequent addition of N,N-dimethylformamide yielded 2-formyl derivatives 2a , 2b and 2c. Dehydration of the oximes 4a , 4b and 4c of 2a , 2b and 2c gave 2-cyano compounds 5a , 5b and 5c , which were hydrolyzed to give 2-carboxylic acids, 6a, 6b and 6c , respectively. Reaction of 3-bromo compounds 7a , 7b and 7c with copper(I) cyanide in N,N-dimethylformamide afforded 3-cyano derivatives 8a , 8b and 8c. Alkaline hydrolysis of 8a , 8b and 8c gave compounds formed by fission of the 1-2 bond of furopyridines 9a , 9b and 9c , while acidic hydrolysis gave the corresponding carboxamides, 10a , 10b and 10c.  相似文献   

9.
Chlorination of the N-oxides of furo[2,3-b]- 1a , -[2,3-c]- 1b and -[3,2-c]pyridine 1c with phosphorus oxychloride afforded compounds substituted normally at the α- or λ-position to the ring nitrogen, 2a, 2′a, 2b, 2c, 2′c and 2′c , and in addition, in the case of 1b , compounds substituted on the furan ring, 2′b and 2″b . The structures of these compounds were confirmed from their ir, nmr and mass spectra. The major chlorinated products 2a, 2b and 2c were converted to methoxy- 5a, 5b and 5c , N-pyrrolidyl- 7a, 7b and 7c , and phenylthiofuropyridines 8a, 8b , and 8c .  相似文献   

10.
This paper describes reactions of 3-bromo- 1a-d , 2-phenylthio- 5a-d and 2-phenylthio-3-bromofuropyridines 6a-d with n-butyl-, t-butyl- and methyllithium and lithioacetonitrile. Lithiation of compounds 1a-d with n-butyl- or methyllithium gave the parent furopyridines 2a-d and o-ethynylpyridinols 3a-d. Reaction of compounds 5a-d with methyllithium afforded o-(phenylthioethynyl)pyridinols 7a-d , which were also yielded by reaction of compounds 6a-d with t-butyl- or methyllithium. The phenylthio group in compounds 7a-d were substituted with t-butyl group by the reaction with excess t-butyllithium. In contrast, 2-phenylthio group in compounds 5a-d and 6a-d was substituted with cyanomethyl group by reaction with lithioacetonitrile to give compounds 11a-d and 10b, c respectively.  相似文献   

11.
Acetoxylation of N-oxide of furo[2,3-b]- 2a , -[3,2-b]- 2b , -[2,3-c]- 2c and -[3,2-c]pyridine 2d with acetic anhydride afforded compounds substituted normally at the α- or γ-position to the ring nitrogen, 3a, 4a, 4b, 3d, 4d, 8 and 9 , and in addition compounds substituted on the furan ring, 5a, 6a, 5b, 6b, 7b, 5c and 7c which were unexpected compounds. The structures of these compounds were established from the ir, nmr and mass spectra, and x-ray crystal analysis of 5b .  相似文献   

12.
This paper describes the synthesis of four tricyclic heterocycles, furo[2,3–6:4,5-c']- ( 5a ), furo[3,2-b:4,5-c']- ( 5b ), furo[2,3-c:4,5-c']- ( 5c ) and furo[3,2-c:4,5-c']dipyridine ( 5d ). Starting with 2-formylfuropyridines ( 1a-d ), β-(2-furopyridyl)acrylic acids 2a-d were obtained by condensing with malonic acid. The acrylic acids were converted to the acid azides by reaction with ethyl chloroformate and the subsequent reaction with sodium azide. Heating of the acid azides at 230–240° with diphenylmethane and tributylamine gave tricyclic pyridinones 3a-d , which were converted to the respective chloro derivatives 4a-d by reaction with phosphorus oxychloride. Reduction of the chloro compounds over palladium-charcoal yielded compounds 5a-d respectively. All the compounds 2 to 5 were characterized by elemental analysis and spectral data. The H and 13C nmr and electronic spectral features of the furodipyridines were discussed comparing with those of the parent furopyridines.  相似文献   

13.
14.
In the presence of copper(I) iodide, heteroaromatic β-iodo-α,β-unsaturated carboxylic acid systems opposed to terminal alkyne afford selectively 6-endo-dig cyclization products via a tandem coupling oxacyclization reaction.  相似文献   

15.
A simple synthesis of furo[2,3-c]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxyisonicotinate ( 2 ) is described. The hydroxy ester 2 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 3a or 3b . Cyclization of compound 3a afforded ethyl 3-hydroxyfuro [2,3-c]pyridine-2-carboxylate ( 4 ) which was hydrolyzed and decarboxylated to give furo[2,3-c]pyridin-3(2H)-one ( 5a ). Cyclization of 3b gave the 2-methyl derivative 5b . Reduction of 5a and 5b with sodium borohydride yielded the corresponding hydroxy derivative 6a and 6b , respectively, which were dehydrated with phosphoric acid to give furo[2,3-c]pyridine ( 7a ) and its 2-methyl derivative 7b . 4-Acetylpyridin-3-ol ( 8 ) was O-alkylated with ethyl bromoacetate to give ethyl 2-(4-acetyl-3-pyridyloxy) acetate ( 9 ). Saponification of compound 9 , and the subsequent intramolecular Perkin reaction gave 3-methylfuro[2,3-c]pyridine ( 10 ). Cyclization of 9 with sodium ethoxide gave 3-methylfuro[2,3-c]pyridine-2-carboxylic acid, which in turn was decarboxylated to give compound 10 .  相似文献   

16.
Derivatives ( 2–8 ) of furo[2,3-b]pyridine having a substituent at the β-position to the ring nitrogen were prepared from the 5-nitro compound 1 via the Sandmeyer reaction.  相似文献   

17.
New syntheses of 4,5,6,7-tetrahydrofuro[2,3-c]pyridines and furo[2,3-c]pyrrolidine derivatives, starting from furan-3-carboxaldehyde, are reported.  相似文献   

18.
1,3-Dipolar Additions to 7-Methylthieno[2,3-c]pyridine 1,1-dioxide 1,3-Dipolar additions of diazomethane, diazoethane, ethyl diazoacetate, phenyldiazomethane and phenyl azide to 7-methylthieno[2,3-c]pyridine 1,1-dioxide have been examined. The structures of the primary products e.g. 2, 8, 18, 25 have been established and their behaviour towards elevated temperatures and/or basic conditions was investigated. Under these conditions the primary products lost SO2 or N2 to yield e.g. 4 , 11 , 19 , 21 , 23 , 27 , 28 .  相似文献   

19.
The Grignard reaction of fused ring cyanopyridine derivatives 1a-d with methyl- and phenylmagnesium bromide yielded the corresponding acylpyridine compounds 2a-d and 3a-d . Furopyridine N-oxides 4a-d were converted into the compounds having a phenyl group at the α-position to the ring nitrogen 5a-d . Reduction of 1a-d and the carboxylic esters 6a-d with diisobutylaluminium hydride yielded the corresponding amines 7a-d and aldehydes 9a-d . The aldehydes were converted to nitroethanol derivatives 10a-d by condensation with nitromethane and acrylic ester compounds 11a-d by the Wittig-Horner reaction with methyl diethyl phosphonoacetate.  相似文献   

20.
Bromination of 3-bromofuro[2,3-b]- 1a , -[3,2-b]- 1b and - [3,2-c]pyridine 1d afforded the 2,3-dibromo derivatives 2a, 2b and 2d , while the -[2,3-c]- compound 1c did not give the dibromo derivative. Nitration of 1a-d gave the 2-nitro-3-bromo compounds 3a-d . The N-oxides 4a-d of 1a-d were submitted to the cyanation with trimethylsilyl cyanide to yield the corresponding α-cyanopyridine compound 6a-d . Chlorination of 4a and 4d with phosphorus oxychloride gave mainly the chloropyridine derivatives 7a, 7′a and 7d , while 4b and 4c gave mainly the chlorofuran derivatives 7′b and 7′c accompanying formation of the chloropyridine derivatives 7b, 7′b and 7c . Acetoxylation of 4a and 4b with acetic anhydride yielded the acetoxypyridine compounds 8a, 8′a and 8b , while 4c and 4d gave the acetoxypyridine 8′c, 8′d and 8′d , pyridone 8c and 8d , acetoxyfuran 8′c and dibromo compound 9c and 9′c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号