首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Both AB and BA block copolymers of α-methylstyrene (αMeSt) and 2-chloroethyl vinyl ether (CEVE) were synthesized by the sequential living cationic polymerization initiated with the HCl-CEVE adduct (1a)/SnBr4 system in CH2Cl2 at -78°C. αMeSt-CEVE (AB) block copolymers with narrow molecular weight distributions ([Mbar]w/[Mbar]n ~ 1.15) were obtained when αMeSt was polymerized first, followed by addition of CEVE to the resulting αMeSt living polymer solution. The reverse order of monomer addition, from CEVE to αMeSt, also led to a BA-type block copolymer. In the polymerization of a mixture of the two monomers, almost random copolymers were obtained. Living polymerizations of αMeSt were also induced with functional initiating systems, HCl-functionalized vinyl ether adducts (1b-1d)/SnBr4, to give end-function-alized poly(αMeSt)s with a methacrylate, an acetate, or a phthalimide terminal.  相似文献   

2.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

3.
Cationic copolymerizations of vinyl sulfides (VS) with some vinyl monomers with boron tri-fluoride-diethyl etherate catalyst were investigated to evaluate their monomer reactivities. The effects of VS on the copolymer yield and viscosity of the resulting copolymers revealed the inhibition or retardation mechanism which was explained in terms of the formation of a stable vinylsulfonium salt by the reaction between a propagating carbonium ion and VS monomer. From the results of copolymerizations of phenyl vinyl sulfide (PVS) with isobutyl vinyl ether (IBVE), β-chloroethyl vinyl ether (CEVE), α-methylstyrene (α-MeSt), and styrene (St), the relative reactivities of these monomers were found to be in the following order: IBVE > CEVE > PVS > α-MeSt > St. The relatively higher reactivity of PVS than St derivatives was explained on the basis of the conjugative and electron-donating nature of the VS monomer. The effects of alkyl and para-substituted phenyl groups in vinyl sulfides on their reactivities toward the propagating carbonium ion were correlated with polar factors and compared with those of the hydrolysis of α-mercaptomethyl chlorides. The transition state for the propagation reaction in cationic polymerization of VS was proposed to be a π-complex type structure.  相似文献   

4.
Amphiphilic block copolymers of vinyl ethers (VEs) of the type —[CH2CH(OCH2CH2OR)]m—[CH2CH(OiBu)]n—were synthesized by living cationic polymerization, where R is a D-glucose residue, and m and n are the degrees of polymerization (m = 20–50; n = 11–89). To obtain them, sequential living block copolymerization of isobutyl vinyl ether (IBVE) and the vinyl ether carrying 1,2:5,6-diisopropylidene-D -glucose residue was conducted by using the HCl adduct of IBVE, CH3CH(OiBu)Cl, as initiator in conjunction with zinc iodide. These precursor block copolymers had a narrow molecular weight distribution (M̄w/M̄n ∼ 1.1) and a controlled composition. Treatment of them with a trifluoroacetic acid/water mixture led to the target amphiphiles. The solubility of the amphiphilic block copolymers in various solvents depended strongly on composition or the m/n ratio. Their solvent-cast thin films were observed, under a transmission electron microscope, to exhibit various microphase-separated surface morphologies such as spheres, cylinders, and lamellae, depending on composition. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
A series of multifunctional malonate anions, [Na⊕?C(COOEt)2CH2]mC6H6?m(I; m = 2–4), were examined as polymer coupling agents for the living cationic polymerization of vinyl ethers initiated with the hydrogen iodide/zinc iodide (HI/ZnI2) initiating system. The bifunctional anion ( 2 ;I, m = 2), 1,4-[Na⊕?C(COOEt)2CH2]2C6H4, terminated living polymers of isobutyl vinyl ether (IBVE) (DP n = 10) almost quantitatively in toluene at ?15°C to give coupled living polymers with doubled molecular weights in 96% yield; the dianion 2 was dissolved in tetrahydrofuran containing 18-crown-6 for maintaining the solution homogeneous. The yield of the coupled polymers was increased with shorter living chains or in less polar solvents. Also by coupling via 2 , ABA block copolymers were obtained from living AB block polymers of IBVE and an ester-functionalized vinyl ether (CH2?CHOCH2CH2OCOCH3). Coupling of living poly(IBVE) with the trifunctional anion ( 3 ; I, m = 3) led to tri-armed polymers in 56% yield, whereas with the tetrafunctional version ( 4 ; I, m = 4), only three out of the four anions reacted to give another tri-armed polymer in 85% yield. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The synthesis of maleimides that have pyrazolic or bipyrazolic pendant groups is described. Their homopolymerization and their copolymerization with 2-chloroethyl vinyl ether (CEVE) is reported. The homopolymerizations of such maleimides were performed under various conditions and led to low molecular-weight polymers. However, alternating copolymers were obtained from CEVE as comonomers whatever the monomers feed compositions. A similar behavior was also observed for maleimides that do not exhibit any spacer, whereas for bulky vinyl ethers, random copolymers were produced. A comparison of the thermal behavior between these copolymers (glass transition temperatures, Tg, and decomposition temperatures) and other copolymers having different spacers between the nitrogenated cycles and the chain are related. Thus, an important decrease of Tg, was observed when C3H6CO2CH2 groups were used as the spacer instead of methylene groups. Moreover, the thermal weakness of these copolymers may come from the substituents of the vinyl ether and is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The effect of zinc chloride (ZnCl2) on the cationic polymerization of isobutyl vinyl ether (IBVE) initiated by carboxyl groups on a carbon black surface was investigated. Although the polymerization of IBVE was initiated by carboxyl groups on the surface, the rate of polymerization was small and the molecular weight distribution (MWD) of poly IBVE was very broad. The rate of the polymerization was found to be drastically increased, and 100% monomer conversion was achieved in a short time by the addition of ZnCl2. The number-average molecular weights (Mn) of the polyIBVE were directly proportional to monomer conversion in the polymerization initiated by the carbon black/ZnCl2 system. By addition of the monomer at the end of the first-stage polymerization, the added monomer was smoothly polymerized at the same rate as in the first stage. The Mn of the polymer was in excellent agreement with the calculated value, assuming the polyIBVE chain forms per unit carboxyl group on the surface and MWD was narrow (Mw/Mn = 1.2 ~ 1.3). Based on the results, it is concluded that carbon black/ZnCl2 system has an ability to initiate the living cationic polymerization of IBVE. Furthermore, it was found that polyIBVE was grafted onto the carbon black surface after the quenching of the living polymer with methanol. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Stimuli‐responsive gradient copolymers, composed of various monomers, were synthesized by living cationic polymerization in the presence of base. The monomers included thermosensitive 2‐ethoxyethyl vinyl ether (EOVE) and 2‐methoxyethyl vinyl ether (MOVE), hydrophobic isobutyl vinyl ether (IBVE) and 2‐phenoxyethyl vinyl ether (PhOVE), crystalline octadecyl vinyl ether (ODVE), and hydrophilic 2‐hydroxyethyl vinyl ether (HOVE). The synthesis of gradient copolymers was conducted using a semibatch reaction method. Living cationic polymerization of the first monomer was initiated using a conventional syringe technique, followed by an immediate and continuous addition of a second monomer using a syringe pump at regulated feed rates. This simple method permitted precise control of the sequence distribution of gradient copolymers, even for a pair of monomers with very different relative monomer reactivities. The stimuli‐responsive gradient, block and random copolymers exhibited different self‐association behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6444–6454, 2008  相似文献   

9.
Hydroxy-terminated telechelic poly(2-chloroethyl vinyl ether) (poly(CEVE)) was synthesized by water-based end-capping reaction of living poly(CEVE) with the initiating system CH3CHCl OCH2CH2 OCOCH3/ZnCl2 in CH2Cl2 at −40°C and subsequent end-group transformation of the acetate (α-end) and aldehyde (ω-end) groups into hydroxy groups. The obtained polymers possess controlled molecular weights and narrow molecular weight distributions.  相似文献   

10.
Cationic polymerization of n‐butyl propenyl ether (BuPE; CH3CH CHOBu, cis/trans = 64/36) was examined with the HCl–IBVE (isobutyl vinyl ether) adduct/ZnCl2 initiating system at −15 ∼ −78 °C in nonpolar (hexane, toluene) and polar (dichloromethane) solvents, specifically focusing on the feasibility of its living polymerization. In contrast to alkyl vinyl ethers, the living nature of the growing species in the BuPE polymerization was sensitive to polymerization temperature and solvent. For example, living cationic polymerization of IBVE can be achieved even at 0 °C with HCl–IBVE/ZnCl2, whereas for BuPE whose β‐methyl group may cause steric hindrance ideal living polymerization occurred only at −78 °C. Another interesting feature of this polymerization is that the polymerization rate in hexane is as large as in dichloromethane, much larger than in toluene. A new method in determining the ratio of the living growing ends to the deactivated ones was developed with a devised monomer‐addition experiments, in which IBVE that can be polymerized in a living fashion below 0 °C was added to the almost completely polymerized solution of BuPE. The amount of the deactivated chain ends became small in hexane even at −40 °C in contrast to other solvents. Thus hexane turned out an excellent solvent for living cationic polymerization of BuPE. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 229–236, 2000  相似文献   

11.
Photopolymerization of acrylonitrile (AN), an acceptor monomer, was found to be accelerated in the presence of isobutyl vinyl ether (IBVE), a donor monomer. The propagation is completed by a radical mechanism as judged by copolymer compositions; in contrast to the N-vinylcarbazole–AN system studied previously. This photopolymerization system is entirely stable if kept in the dark. The comparison of the relation between Rp and [IBVE]/[AN] ratio in the monomer feed found for the spontaneous photopolymerization with that for radical polymerization initiated by azobisisobutylonitrile in the dark leads to the conclusion that the rate of photoinitiation is enhanced by the interaction between AN and IBVE, whereas the propagation step by a radical mechanism is retarded by increasing concentration of IBVE. The contact charge-transfer complex between IBVE and AN was confirmed by electronic spectroscopy of the polymerization system, which showed photosensitization by charge-transfer interaction. The spectroscopic study of other weak donor–weak acceptor systems is also discussed.  相似文献   

12.
Cationic polymerization of 2,2-bis{4-[(2-vinyloxy)ethoxy]phenyl}propane [CH2CH O CH2CH2O C6H4 C(CH3)2 C6H4 OCH2CH2 O CHCH2; 2], a divinyl ether with oxyethylene units adjacent to the polymerizable vinyl ether groups and a bulky central spacer, was investigated in CH2Cl2 at 0°C with the diphenyl phosphate [(C6H5O)2P(O)OH]/zinc chloride (ZnCl2) initiating system. The polymerization proceeded quantitatively and gave soluble polymers up to 85% monomer conversion. In the same fashion as the polymerization of 1,4-bis[2-vinyloxy(ethoxy)]benzene (CH2CH O CH2CH2O C6H4 OCH2CH2 O CHCH2; 1) that we already studied, the content of the unreacted pendant vinyl ether groups of the produced soluble polymers decreased with monomer conversion, and almost all the pendant vinyl ether groups were consumed in the soluble products prior to gelation. Alternatively, endo-type double bonds were gradually formed in the polymer main chains by chain transfer reactions and other side reactions as the polymerization proceeded. The polymerization behavior of isobutyl vinyl ether (3), a monofunctional vinyl ether, under the same conditions, showed that the endo-type olefins in the polymer backbones are of no polymerization ability with the growing active species involved in the present polymerization systems. These results indicate that the intermolecular crosslinking reactions occurred primarily by the pendant vinyl ether groups, and the final stage of crosslinking process leading to gelation also may occur by the small amount of the residual pendant vinyl ether groups (supposedly less than 2%). The formation of the soluble polymers that almost lack the unreacted pendant vinyl ether groups is most likely due to the frequent occurrence of intramolecular crosslinking reactions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1931–1941, 1999  相似文献   

13.
Cationic polymerization of isobutyl vinyl ether (IBVE) with acetic acid (CH3COOH)/tin tetrahalide (SnX4: X = Cl, Br, I) initiating systems in toluene solvent at 0°C was investigated, and the reaction conditions for living polymerization of IBVE with the new initiating systems were established. Among these tin tetrahalides, SnBr4 was found to be the most suitable Lewis acid to obtain living poly(IBVE) with a narrow molecular weight distribution (MWD). The polymerization with the CH3COOH/SnBr4 system, however, was accompanied with the formation of a small amount of another polymer fraction of very broad MWD, probably due to the occurrence of an uncontrolled initiation by SnBr4 coupled with protonic impurity. Addition of 1,4-dioxane (1–1.25 vol %) or 2,6-di-tert-butylpyridine (0.1–0.6mM) to the polymerization mixture completely eliminated the uncontrolled polymer to give only the living polymer with very narrow MWD (M w/M n ≤ 1.1; M w, weight-average molecular weight; M n, number-average molecular weight). The M n of the polymers increased in direct proportion to monomer conversion, continued to increase upon sequential addition of a fresh monomer feed, and was in good agreement with the calculated values assuming that one CH3COOH molecule formed one polymer chain. Along with these results, kinetic study and direct 1H-NMR observation of the living polymerization indicated that CH3COOH and SnBr4 act as so-called “initiator” and “activator”, respectively, and the living polymerization proceeds via an activation of the acetate dormant species. The basic additives such as 1,4-dioxane and 2,6-di-tert-butylpyridine would serve mainly as a “suppressor” of the uncontrolled initiation by SnBr4. The polymers produced after quenching the living polymerization with methanol possessed the acetate dormant terminal and they induced living polymerization of IBVE in conjunction with SnBr4 in the presence of 1,4-dioxane. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3173–3185, 1998  相似文献   

14.
In the cationic polymerization of isobutyl vinyl ether (IBVE) with binary initiating systems consisting of a protonic acid as an initiator and a Lewis acid as an activator/catalyst, phosphoric acid derivatives [(RO)2POOH] coupled with SnCl4 gave highly isotactic poly(IBVE)s, whereas those with a bulky substituent (R), [C4H9CH(C2H5)CH2O]2POOH ( 7 ) and (n‐C10H21)2POOH ( 8 ), led to the highest isotacticity [meso dyad (m) = 86%]. In contrast, isospecificity was lower with IBVE–HCl and CF3COOH under the same conditions. From the effects of the polymerization temperature (−78 to 0 °C), it was concluded that the high isospecificity with 7 and 8 was due to an enthalpic factor. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1067–1074, 2001  相似文献   

15.
α-Methylstyrene (α-MS) and isobutyl vinyl ether (IBVE) were copolymerized by using the H2O/EtAlCl2 initiator system and CH2Cl2 and CH3Cl solvent in the temperature range from -30 to -90°C. As compared to homopolymerization of α-MS, both yields and molecular weights are reduced upon addition of small amounts of IBVE to the feed. The reactivity ratios were calculated by the method of Kelen and Tödös as well as the Fineman and Ross method, and the combined effect of change of solvent and temperature on reactivity ratios was determined. Effects of feed composition and temperature on the copolymer yield, composition, and number-average molecular weight M n were studied in detail. M n showed a novel exponential dependence on the IBVE concentration in the feed. The overall activation energies of molecular weight were determined from the Arrhenius plots for both homo-and copolymerization systems. Based on these and the yield data, a speculation is made regarding reaction mechanism for molecular weight control. NMR and DTA data are reported, which establish the random nature of the copolymers.  相似文献   

16.
The effect of 1,4-dioxane as an added base on the cationic polymerization of isobutyl vinyl ether (IBVE) initiated by carboxyl groups on carbon black surface/ethylaluminum dichloride (EtAlCl2) system was investigated. Although the cationic polymerization of IBVE by carbon black/EtAlCl2 system the absence of 1,4-dioxane instaneously proceeded and the monomer conversion achieved 100% within a minute. The molecular weight distribution (MWD) of polyIBVE obtained was very broad. On the contrary, the MWD of polyIBVE obtained was very narrow and narrower than that obtained from the carbon black/ZnCl2 initiating system by the addition of 1,4-dioxane. The number-average molecular weight (Mn) of polyIBVE obtained was directly proportional to monomer conversion in the cationic polymerization. However, the Mn of polyIBVE obtained from the polymerization by the initiating system in the the presence of 1,4-dioxane was smaller than that of the calculated value, assuming that polyl(IBVE) chain forms per unit carboxyl group on carbon black surface. It was concluded that carbon black/EtAlCl2 initiating systems in the presence of 1,4-dioxane has an ability to initiate “living-like” cationic polymerization of IBVE based on the above results. PolyIBVE was grafted onto a carbon black surface after quenching the above “living-like” cationic polymerization systems with methanol.  相似文献   

17.
The sequential carbenium ion block copolymerization of ethyl vinyl ether (EVE) and isobutyl vinyl ether (IBVE) with N-vinylcarbazole (NVC) is described. Requisite conditions for the successful application of the sequential synthesis technique to these systems were established: (1) the use of stable carbocation initiator salts (e.g., Ph3CSbCl6) which lead to essentially terminationless polymerizations; (2) low solvent-to-monomer ratios in order to suppress any possible chain transfer to methylene dichloride molecules; (3) high ratios of initiator to monomer which create a pseudo-“living” system. The block products (PEVE-b-PNVC and PIBVE-b-PNVC) were isolated by precipitation and extraction. The intrinsic viscosities of these products displayed minima at 30°C.  相似文献   

18.
Living cationic copolymerization of amide‐functional vinyl ethers with isobutyl vinyl ether (IBVE) was achieved using SnCl4 in the presence of ethyl acetate at 0 °C: the number–average molecular weight of the obtained polymers increased in direct proportion to the monomer conversion with relatively low polydispersity, and the amide‐functional monomer units were introduced almost quantitatively. To optimize the reaction conditions, cationic polymerization of IBVE in the presence of amide compounds, as a model reaction, was also examined using various Lewis acids in dichloromethane. The combination of SnCl4 and ethyl acetate induced living cationic polymerization of IBVE at 0 °C when an amide compound, whose nitrogen is adjacent to a phenyl group, was used. The versatile performance of SnCl4 especially for achieving living cationic polymerization of various polar functional monomers was demonstrated in this study as well as in our previous studies. Thus, the specific properties of the SnCl4 initiating system are discussed by comparing with the EtxAlCl3?x systems from viewpoints of hard and soft acids and bases principle and computational chemistry. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6129–6141, 2008  相似文献   

19.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

20.
We investigated the cationic polymerization of vinyl ethers using metal complex catalysts with salen and salphen ligands. Metal complexes were generated in situ from the reaction of a ligand and a metal chloride. The choice of a ligand and a central metal was crucial for tuning the catalyst function such as catalytic activity and controllability of the polymerization. Among metal chlorides employed, ZrCl4 was the most efficient for controlled polymerization. Cationic polymerization of isobutyl vinyl ether (IBVE) proceeded using the salen and salphen‐type ligand/ZrCl4 initiating systems, yielding polymers with predetermined molecular weights and narrow molecular weight distributions. Importantly, the structural effects of the complex catalysts were responsible for the polymerization behavior. For example, the polymerization using the salen‐type ligand/ZrCl4 system was much slower than that using the salphen‐type ligand/ZrCl4 system. In addition, the polymerization of IBVE using the salen‐type ligand/FeCl3 system proceeded in a controlled manner, which was in contrast to uncontrolled polymerization using the salphen‐type ligand/FeCl3 system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 989–996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号