首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The speed of analysis in capillary gas chromatography can be substantially increased by reduction of the column inner diameter. However, special demands are then posed upon instrumental design. In particular, the sampling system is highly critical because it has to be capable of delivering extremely small injection band widths which must be compatible with the column inside diameter. This study focuses on the evaluation of two potentially suitable sample introduction systems with respect to input band width and detection limits and their compatibility with small bore (≦ 100 μm) columns in capillary gas chromatography. One of them allows liquid on-column injection, based on liquid splitting, of only a few nl onto small bore (≦ 100 ?m) fused silica columns. For gases, input band widths as low as 1 ms are obtained with this system. The other one is part of a miniaturized gas chromatograph with extremely low dead volume interfaces and detector volumes. It allows input band widths for gases of a few ms. Without any preconcentration ppm concentrations are measured in gaseous samples with a 80 ?m thick film capillary column. It will be shown that a further reduction of the minimum detectable amount and analysis time is possible with this equipment.  相似文献   

2.
Reduction of the column diameter has proved to be a highly efficient tool to increase the speed of analysis. Unfortunately, the requirements for instrumental design with respect to sample input band width, low dead volume interfacing, and time constants of detection and registration systems are the more critical the smaller the inside diameter. Recently we reported input band widths as low as 1 ms [1] for gaseous samples at ppm concentration levels, without any preconcentration, in a study with narrow bore columns and thermal conductivity detection. In this study a simple versatile micro on-column cold trap/thermodesorption enrichment system for narrow bore columns is introduced and evaluated. The combination of considerable sample enrichment and preservation of the compatibility of the required input band width with column dimensions is critically examined. The process of thermodesorption (reinjection) which is the most critical step, is particularly emphasized. The system consists of a short aluminum coated fused silica or metal capillary with a low mass and a low cost electrical heating. Input band widths down to 1 ms are obtained without extreme demands on electrical power (300 watt). The potential of the system is illustrated with some extremely fast separations.  相似文献   

3.
Thermal decomposition of some hydrocarbon and chlorinated hydrocarbon compounds in metal capillary tubes used in an inlet system for high speed gas chromatography has been investigated. The metal tube is cooled to about ?75°C by a flow of cold nitrogen gas in order to focus a vapor sample cryogenically. A capacitive discharge power supply is then used to heat the metal tube resistively in order to revaporize the sample and introduce it to the separation column as a plug 5-10 ms wide. The effects of tube temperature, tube material, sample vapor residence time, and type of carrier gas on thermal cracking are described. Use of a copper-nickel alloy tube resulted in less cracking than either pure platinum or pure nickel. Cracking is more significant with hydrogen as carrier gas than with helium. Cracking also increases with increasing sample residence time in the hot tube. Quantitative sample injection with minimum decomposition can be obtained for a variety of aliphatic and aromatic hydrocarbons and chlorinated hydrocarbon compounds.  相似文献   

4.
Gardenia yellow is globally the most valuable spice and food color. It is generally a mixture of water‐soluble carotenoid glycosyl esters which consist of crocetin bis(gentiobiosyl) ester as the main component. Crocetin is a natural carotenoid dicarboxylic acid that may be a candidate drug for pharmaceutical development, however, it is either present in trace amounts or is absent in natural gardenia yellow products. We here propose that crocetin produced by alkaline hydrolysis can be used to qualitatively evaluate gardenia yellow products using an ultra high performance liquid chromatographic assay. A useful and efficient isolation technique for isolating high‐purity crocetin from gardenia yellow using high‐speed countercurrent chromatography is described. High‐speed countercurrent chromatographic fractionation followed by an ultra high performance liquid chromatographic assay showed that trans‐crocetin is easily converted to about 15% cis‐crocetin (85% trans‐crocetin). Crocetin in gardenia yellow was quantitatively evaluated. Our approach is based on the hydrolysis process for converting crocetin glycosyl esters to crocetin before evaluation and isolation using the ultra high performance liquid chromatographic and high‐speed countercurrent chromatographic methods. The combination of hydrolysis and chromatographic methods allows evaluation of the purity and quantity of crocetin in gardenia yellow.  相似文献   

5.
Ten different metal tubings were investigated for thermal decomposition of analytes when used as the trap tube in a cryotrap/thermodesorption inlet system. No noticeable sample decomposition of hydrocarbons, chlorinated hydrocarbons and a brominated hydrocarbon was observed for six of the tubings with hydrogen as the carrier gas. This observation may be partly attributed to the developed deactivation techniques that produce inert metal tubings that are being widely adopted by many column manufacturers, the different trap materials used in comparison to previous studies and the decreased sample residence time in the hot trap tube. A cryotrap using carbon dioxide was constructed and tested as a alternative to the previously used liquid nitrogen based systems. This cryotrap was able to trap compounds with a boiling point of 80°C.  相似文献   

6.
Summary High performance liquid chromatography (HPLC) is widely used in drug development and quality control. The main objective is to obtain dependable results in the shortest time in order to reduce the time taken to develop drugs and to ensure better quality of the final compound. High speed liquid chromatography (HSLC) helps us to reach this objective. In this paper pratical aspects of HSLC are discussed mainly in terms of instrument requirements and the practical needs of users. Comparison between HPLC and HSLC separations of pharmaceutical preparations are given and discussed. The contribution of HSLC to decrease solvent consumption and consequently analysis cost and its role in reducing environmental pollution, are also mentioned.  相似文献   

7.
A comparison of the effects on peak shape is made between a 350 and 100 microliter displaced coaxial and a 350 microliter concentric cylinder electron capture cell. Peaks as fast as W1/2 = 0.5 second were detected using electronics operating in the constant current mode. The measured peak shapes are compared to those obtained by computer simulation assuming either complete mixing or plug-like flow within ECD cell. The advantage of controlling the flow pattern through the cell to obtain plug-like flow is demonstrated. Differences in peak shape between the displaced coaxial and concentric cylinder cells of the same volume are explained in terms of the electrostatic fields within the cells.  相似文献   

8.
9.
A 15 second, high speed, gas chromatographic determination has been performed on the volatile aromatic compounds in gasoline-contaminated ground water following manual, static headspace sampling. Retention time reproducibility of the seven peaks studied ranged from 0.25 to 0.67 per cent (average relative standard deviation). Excellent linear correlations were obtained for plots of either peak height or peak area against the concentration of the compounds. Comparison was made between the results obtained from the analysis of three replicate samples of gasoline-contaminated ground water by the high speed GC, by two field-portable GCs, and by a laboratorybased GC. It is worthy of note that all the high speed GC analyses required for this study were accomplished in one day.  相似文献   

10.
Thermal treatment hyphenated with gas chromatography is a versatile and powerful tool in the study of polymer characterization. An inexpensive system where thermal treatment at different temperatures occurs inside a Programmable Temperature Vaporization injector (PTV) is described. The samples investigated, commercial plastics, are complex mixtures that contain several polymers and additives. These plastics as well as their pure constituents are subjected to multi-step thermal treatment. The individual chromatograms of the various constituents of the polymeric sample are correlated with those of the final material in order to identify additives (thermal desorption) and degradation products (pyrolysis). Results obtained with the new method indicate the interesting potentials of the technique for the characterization of polymer compositions. Reproducibility of absolute and relative peak areas has been considered and found to be acceptable. The absence of a heated transfer line and switching valves, which are always present in conventional set-ups, eliminates the risk of losses of high molecular weight components. Further advantages of the technique proposed are simplicity, versatility, and its inexpensive nature.  相似文献   

11.
The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 °C (optimal flow 0.5 mL/min) to 2.4 at 150 °C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6 mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 °C within the pH range 1–9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC–MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol.  相似文献   

12.
A new model of solvent gradients selection was rationally developed for the preparative separation of target compounds. The solvent gradients were selected based on a three-stage screening process where stationary phase retention was ensured by introducing a new parameter termed as the phase ratio. The phase ratio was calculated after mixing the upper phase of a solvent system with the lower phase of a different solvent system (1:1, v/v). The developed model was applied to the one-step separation of eight ginsenosides from Panax ginseng. Three gradients were selected on the basis of new model and eight ginsenosides, Rb(1), Rb(2), Rc, Rd, Re, Rg(1), Rf, and Rh(1), were efficiently separated by high-speed counter-current chromatography coupled with evaporative light scattering detector. The structures of all compounds were characterized by electrospray-ionization mass spectrometry and nuclear magnetic resonance spectroscopy.  相似文献   

13.
The point of our published papers since 1957 is reviewed. The relations between the required value of peak resolution, K1 (or R), and peak separation, K3 (eqn 9); K1 and relative accuracy of a peak height quantitative method, Ph (eqn. 10); K1 and relative accuracy of a peak area method, Pa, (eqn. 12) at different concentration ratios, ?, are derived. The final result in Table 2 shows a large influence of ? on the required value of K1. The approximately linear relation between peak width and retention value (eqn. 18) exists not only in GC. but also in HPLC. Plate height values H1 and H for a solute with capacity ratio, k′, equal to unity or approaching infinity, respectively, are used to evaluate the column efficiency (eqn. 20). The measuring methods (eqn. 21,22,23) and parameters effecting on H1 and H are given for GC packed column (eqn. 24), GC open tubular column (eqn. 25) and HPLC (eqn. 26). In the light of this, columns of high efficiency were developed. Some typical chromatograms for high speed analysis and separation of complex mixtures are given.  相似文献   

14.
The selectivity of a column system, S, defined by equation 28, includes a variation coefficient (β) of plate number with capacity ratio which has a large influence on the peak capacity, as shown in Fig. 18. Some typical chromatograms are given. In order to predict S for a column system from Kovat's Index, equations 40 and 41 are given to calculate the constant of the carbon number rule for squalane at different temperatures or for different stationary phases. The specific retention value of heptane on squalane at different temperatures can be calculated from equation 42. The nonpolarity index, defined by equation 43, was used to calculate the retention value of heptane on various stationary phases. In liquid chromatography, the order of elution may be reversed by changing the composition of the eluent on the same chemically bonded silica (manufactured in China). The linear relations between the log retention values of different kinds of solutes or of a single solute on the silicas of different surface areas when using the same eluent are given.  相似文献   

15.
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size.  相似文献   

16.
Method validations in addition to decline patterns of fluquinconazole and flusilazole in lettuce grown under greenhouse conditions at two different locations were investigated. Following the application of fluquinconazole and flusilazole at a dose rate of 20 mL/20 L water, lettuce samples were collected randomly for up to 7 days post‐application, and simultaneously extracted with acetone, purified through solid‐phase extraction, analyzed via gas chromatography with a nitrogen phosphorus detector, and confirmed through gas chromatography–mass spectrometry. The linearity was excellent, with determination coefficients (R2) between 0.9999 and 1.0. The method was validated in triplicate at two different spiking levels (0.2 and 1.0 mg/kg) with satisfactory recoveries between 75.7 and 97.9% and relative standard deviations of <9. The limit of quantification was 0.01 mg/kg. Both analytes declined very quickly, as can be seen from the short half‐life time of <4 days. Statistical analysis revealed significant differences between residues at different days of sampling, except at 7 days post‐application (triple application). At that point, the decline patterns of fluquinconazole and flusilazole were independent of application rate, location, temperature and humidity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, sensitive, and reliable procedure based on stir bar sorptive extraction coupled with high‐performance liquid chromatography was applied to simultaneously extract and determine three semipolar nitrosamines including N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine. To achieve the optimum conditions, the effective parameters on the extraction efficiency including desorption solvent and time, ionic strength of sample, extraction time, and sample volume were systematically investigated. The optimized extraction procedure was carried out by stir bars coated with polydimethylsiloxane. Under optimum extraction conditions, the performance of the proposed method was studied. The linear dynamic range was obtained in the range of 0.95–1000 ng/mL (r = 0.9995), 0.26–1000 ng/mL (r = 0.9988) and both 0.32–100 ng/mL (r = 0.9999) and 100–1000 ng/mL (r = 0.9998) with limits of detection of 0.28, 0.08, and 0.09 ng/mL for N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine, respectively. The average recoveries were obtained >81%, and the reproducibility of the proposed method presented as intra‐ and interday precision were also found with a relative standard deviation <6%. Finally, the proposed method was successfully applied to the determination of trace amounts of selected nitrosamines in various water and wastewater samples and the obtained results were confirmed using mass spectrometry.  相似文献   

18.
A high performance liquid chromatographic method with fluorimetric detection for the determination of aflatoxin M1 (AFM1) in milk has been optimized and validated according to Commission Decision 2002/657/EC by using the conventional validation approach. The procedure for determining selectivity, recovery, precision, decision limit (CCα), detection capability (CCβ) and ruggedness of the method has been reported. The results of the validation process demonstrate the agreement of the method with the provisions of Commission Regulation 401/2006/EC. The mean recovery calculated at three levels of fortification (0.5, 1.0, and 1.5-fold the MRL) was 91% and the maximum relative standard deviation value for the within-laboratory reproducibility was 15%. Limit of detection (LOD) and limit of quantitation (LOQ) values were 0.006 μg kg−1 and 0.015 μg kg−1 while the CCα and CCβ values were 0.058 μg kg−1 and 0.065 μg kg−1, respectively. The relative expanded measurement uncertainty of the method was 7%. The method was not affected by slight variations of some critical factors (ruggedness minor changes) as pre-treatment and clean-up of milk samples, thermal treatment and different storage conditions, as well as by major changes valued in terms of milk produced by different species (buffalo, goat and sheep). The method allowed accurate confirmation analyses of milk samples, resulted positive by the screening method. In fact, the Z-score values attained in a proficiency test round were well below the reference value of 1, proving the excellent laboratory performances.  相似文献   

19.
A selective and sensitive method was developed based on dispersive micro‐solid‐phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high‐performance liquid chromatography with UV detection. SiO2, SiO2@MPTES, and SiO2@MPTES@Au nanoparticles (MPTES = 3‐mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett–Burman design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1–500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号