首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Excess molar volumes at 298.15 K of the ternary mixtures (propyl ethanoate + n-heptane + n-decane), (propyl propanoate + n-heptane + n-decane) and (propyl butanoate + n-heptane + n-decane) were determined using a DMA 60/602 Anton Paar densimeter. All the experimental values were compared with the results obtained with empirical expressions for estimating ternary properties from binary data and with the Nitta-Chao group-contribution model. For these ternary mixtures the same behaviour that had been observed in ester + n-alkane binary systems was found: excess volumes decrease when the ester length increases.  相似文献   

2.
ABSTRACT

Rapidly increasing demands for higher integration density and stability of electronic devices embrace higher requirements for thermally conductive silicone rubber, which is promisingly used in ultra-thin components. In this work, alumina whiskers (AWs) and alumina flakes (AFs) are used to modify liquid silicone rubber (LSR) by fabricating binary (AFs/LSR) or ternary (AWs/AFs/LSR) composites. The thermal conductivity and mechanical strength of the binary and ternary composites were investigated. Thermal conductivity of the binary AFs/LSR composite (25AFs/LSR) was 0.1990 W m?1 K?1, while the thermal conductivity of the ternary AFs/AWs/LSR composite (20AFs/5AWs/LSR) was 0.2655 W m?1 K?1. Furthermore, the tensile strength of the ternary AWs/AFs/LSR composites increased by 180.9% as compared with the binary system, increased to 7.81 MPa from 2.78 MPa due to the introduction of 1 wt% AWs. As a reason, a significant synergistic effect of AWs and AFs in the enhancement of both thermal and mechanical properties of the LSR was proved. Furthermore, the dielectric property measurements demonstrated that the ternary composites exhibited a lower dielectric constant and dielectric loss, indicating that the AWs/AFs/LSR composites were qualified to be applied in the field of electronic devices.  相似文献   

3.
The eutectic ternary phase diagrams of some typical volatilizable energetic materials have been investigated by high pressure differential scanning calorimeter (PDSC). The ternary HX phase diagrams for TNT/TNAZ/DNTF (TTD) and TNAZ/DNTF/RDX (TDR) systems were constructed by the correlation of the apparent fusion heat with the composition (HX method). And, the ternary TX phase diagrams (the temperature dependence on composition) for the two ternary systems were constructed by calculating from the data of the five TX binary phase diagrams. The eutectic compositions (mol%) of TTD and TDR ternary systems were obtained to be 52.3/27.3/20.4 (HX method), 53.2/25.8/21.0 (TX method) and 54.9/39.6/5.5 (HX method), 55.1/42.2/2.7 (TX method), respectively. The eutectic temperatures of the ternary systems were obtained by PDSC determination and TX method calculation to be 76.5 and 76.7 °C, 47.5 and 50.2 °C, respectively. It is shown that the results obtained by two methods are in agreement and the error in measuring or calculating eutectic compositions and temperatures for the two ternary systems are within allowable ranges of ±3 mol% and ±3 °C, respectively. Moreover, by means of constructing two ternary HX phase diagrams with different fixed composition of a component and comparing the apparent fusion heat of eutectics with calculated one, the results obtained from HX method for TTD system were proved. The results showed that the gasification or volatilization of easy volatile materials could be efficiently restrained by high pressure atmosphere, and the perfectly and ideally HX ternary phase diagrams can be constructed. In comparison with TX method, HX method has as a virtue of being quick and simple, especially on constructing ternary phase diagram.  相似文献   

4.
Binary and ternary systems composed of dapsone, sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD), β‐CD and egg phosphatidylcholine (EPC) were evaluated using 1D ROESY, saturation transfer difference NMR and diffusion experiments (DOSY) revealing the binary complexes Dap/β‐CD (Ka 1396 l mol?1), Dap/SBE‐β‐CD (Ka 246 l mol?1), Dap/EPC (Ka 84 l mol?1) and the ternary complex Dap/β‐CD/EPC (Ka 18 l mol?1) in which dapsone is more soluble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Densities (ρ), viscosities (η) and speeds of sound (u) of the ternary mixture (1-heptanol + tetrachloroethylene + methylcyclohexane) and the corresponding binary mixtures (1-heptanol + tetrachloroethylene), (1-heptanol + methylcyclohexane) and (tetrachloroethylene + methylcyclohexane) at 298.15 K were measured over the whole composition range. The data obtained are used to calculate the excess molar volumes (V E), excess isobaric thermal expansivities (α E), viscosity deviations (Δη), excess Gibbs energies of activation of viscous flow (ΔG *E) and excess isentropic compressibilities (κ S E) of the binary and ternary mixtures. The data from the binary systems were fitted by the Redlich–Kister equation whereas the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the Heric and McAllister equations. The best correlation method for the speeds of sound and isentropic compressibilities of the binary system (1-heptanol + methylcyclohexane) is found using IMR (Van Deal ideal mixing relation) and for the binary system (tetrachloroethylene + methylcyclohexane) it is found using the NR (Nomoto relation) and for the binary system (1-heptanol + tetrachloroethylene) and the ternary system (1-heptanol + trichloroethylene + methylcyclohexane) it is obtained from the FLT (Jacobson free length theory).  相似文献   

7.
Models for estimation of the first (K1), second (K2), and overall stability constant (β2) of copper(II) chelates with naturally occurring amino acids, based on the valence connectivity index of the 3rd order (3 χ v), were improved by introduction of a square term and a new graph representation for mono‐complexes (MLcor). The models gave SE=0.07, 0.05–0.07 and 0.05–0.08 for lg K1, lg K2 and lg β2 constants, respectively; models that encompass both binary and ternary biscomplexes included indicator variable. We also validated our models on the test set which included two mono‐, two binary and two ternary Cu(II) chelates with α‐aminobutanoic acid and α‐aminopentanoic acid, not included into the calibration. The absolute differences between experimental and predicted stability constants were in the range of 0.01–0.16.  相似文献   

8.
The acid-base equilibria of triethylenetetramine. (Trien) and the formation equilibria of binary and ternary complexes of Zn(II) with Trien as primary ligand and some selected arnino acids and DNA units as secondary ligands have been investigated. The results showed the formation of a 11 Zn (Trien)2+ complex. At higher pH, the Zn (Trien)2+ complex is hydrolysed to give Zn (Trien) (OH)+ and Zn(Trien)(OH)2 complexes. The fraction of the monohydroxo species attains a maximum of 81.3% at pH 10. The stability constantsK Zn(Trien)A Zn(Trien) for the ternary complexes were determined. Histidine coordinates in a histamine-like way. Lysine and ornithine ligate by the two amino groups. Serine and methionine are bound in a glycine-like mode. However, penicillamine, cysteine and glutathione ligate partly like mercaptoethylamine and partly like mercaptopropionic acid. In the case of DNA complexes, inosine is bound through the n1 atom. However, uracil, undine, thymine and thymidine ligate through the N3 atom. The relative stabilities of ternary complexes are compared with those of the corresponding binary complexes in terms of logK values. The concentration distribution diagrams of the complexes are evaluated.  相似文献   

9.
The binary and ternary complexes of Cu2+, Ni2+, Co2+ and Zn2+ metal ions with resorcinol (R) as primary ligand and some biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids) as secondary ligands were studied in aqueous solution at 25 °C and I=0.1 mol⋅dm−3 NaNO3 using the potentiometric technique. The formation of different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes is inferred from the corresponding potentiometric pH-titration curves. The ternary complex formation was found to take place in a stepwise manner. The protonation constants of the ligands were determined and used for determining the stability constants of the different complexes formed in aqueous solutions. The lower stability of the 1:2 binary complexes compared to the corresponding 1:1 systems of all ligands studied were in accordance with statistical considerations. The order of stability of the complexes formed in solution was investigated in terms of the nature of the resorcinol, carboxylic acid, and metal ion used. The values of Δlog 10 K, percentage of relative stabilization (% R.S.), and log 10 X for mixed-ligand complexes studied have been evaluated and discussed. The concentration distribution of the various species formed in solution was evaluated. The mode of chelation of the ternary complexes was ascertained by conductivity measurements.  相似文献   

10.
The stability constant of the Cu2+-2,2′-bipyridyl-glycine complex (log K = 7,88) was measured and compared with that of the binary Cu2+-glycine complex (log K = 8,27). The value Δ log K = ?0,4 (cf. equation (3)) is in the order which should be expected for the coordination of a mixed O? N-ligand to (Cu-Bipy)2+ which results in the formation of a ternary complex (cf. [1]).  相似文献   

11.
The work is undertaken to evaluate the effect of Tween 80 on the complexing ability of β-cyclodextrins to encapsulate the poorly soluble antiretroviral agent, nevirapine. The phase solubility diagram indicates 1:1 stoichiometry and is supported by electronspray ionization mass spectrometry. The complexes were characterized by DSC, FT-IR, and XRD in the solid state. The ternary systems were autoclaved before being lyophilized for the best results. Proton NMR suggests that the methyl pyridine ring of the drug is involved in inclusion and enters from the wider side of the cavity which was confirmed by COESY NMR. Solution calorimetry, a direct method to determine the thermodynamic parameters, was used to determine the complexation constant (K) and other thermodynamic properties. The process is associated with negative ∆H and positive ∆S indicating a stable inclusion complex. The value of K follows the order β-CD < HP-β-CD < M-β-CD. The molar enthalpy of solution in autoclaved solid formulation is less endothermic as compared to additive molar enthalpy of solution obtained by summation of enthalpy of solution of individual components suggesting synergistic interaction between the drug and its constituents. A threefold increase of the in vitro permeability flux was observed for binary systems which was elevated to fourfold for autoclaved ternary complexes.  相似文献   

12.
The formation constants (log K ) of ternary mixed ligand complex formed from 1,10-phenanthroline (A, phen) and N-(p-substituted phenyl) glycines,R NHCH2COOH (B, p RPhG, CH3, H, CL), with copper (II), nickel (II), cobalt (II) and zinc (II) were determined by pH method at 25°C in 30% (V/V) ethanol solution in presence of 0.1 M NaClO4. It was found that linear free energy relationships exist between the stability of M(II)-phen-p-RPhG ternary complex and the base strengths of the ligands p-RPhG, conforming to the equation log K = α pKB +C. The factors influencing the stability of the ternary complex have been discussed. The enhancement of stability of ternary complex was explained in terms of formation of π back bonding between metal ion and the ligand phen. In contrast to the binary system, the ternary ni (II) and zn (II) complexes showed higher stability which could be accounted for by the formation of π back bonding and by intramolecular ligand-ligand interaction, possibly aromatic-ring stacking.  相似文献   

13.
Osmotic vapor pressure and density measurements have been carried out for binary aqueous and ternary aqueous solutions containing a fixed concentration of 18-crown-6 (0.2 mol⋅kg−1) and ammonium chloride or ammonium bromide at 298.15 K. The concentration of the ammonium salts was varied between 0.02 to 0.5 mol⋅kg−1. The measured water activities were used to obtain the activity coefficient of water and the mean molal activity coefficient of the ions in binary as well as ternary solutions. Using the method developed by Patil and Dagade reported earlier in this journal and the McMillan-Meyer pair and triplet Gibbs energy interaction parameters, the thermodynamic equilibrium constant (K) for the 18-crown-6:NH4 + complexes were determined. It is observed that the nature and polarizability of anions play important roles in imparting stability to the complexed species. The log10 K values for the 18-crown-6:NH4 + complexed species are lower than for the complexes involving alkali metal ions such as K+. The volume of complexation for the studied systems obtained from the apparent molar volumes of ammonium halides in ternary solutions are positive and of smaller magnitude than those reported for complexation with alkali ions. The results are further discussed in terms of water structural effects, complex formation, the role of counter anions and hydrophobic interactions.  相似文献   

14.
Summary Experimental excess molar volumes for the ternary system x1MTBE+x21-propanol+(1-x1-x2) heptane and the three involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. The ternary mixture shows maximum values around the binary mixture MTBE+heptane and minimum values for the mixture MTBE+propanol. The ternary contribution to the excess molar volume is negative, with the exception of a range located around the rich compositions of 1-propanol. Several empirical equations predicting ternary mixture properties from experimental binary mixtures have been applied.  相似文献   

15.
The extraction behavior of Th(IV) from dilute nitric as well as perchloric acid medium using 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and its mixture with tri-n-octyl phosphine oxide (TOPO) was investigated. The species of the type Th(X)(PMBP)3·(HPMBP) and Th(X)(PMBP)3·(TOPO) were extracted for the binary and ternary extraction systems, respectively, where X=NO3− or ClO4−. The presence of 1.25·10−5M Th carrier in the aqueous phase resulted in the extracted species of the type of Th(PMBP)4 and Th(PMBP)4·(TOPO), respectively. The extraction constant (logk ex ) for the binary species Th(PMBP)4 was found to be 6.89±0.01 while the overall extraction constant (logK) for the ternary species Th(PMBP)4·(TOPO) was calculated to be 13.17±0.06.  相似文献   

16.
The new ternary lithium copper aluminide Li8Cu12+xAl6−x (x = 1.16) crystallizes in the P63/mmc space group with six independent atom positions of site symmetries m. (Al/Cu mixture), m2 (Li atoms), 3m. (Al/Cu mixture and Li atoms) and .m. (Cu atoms). The compound is a derivative of the K7Cs6 binary structure type and is related to the binary MgZn2 Laves phase and the LiCuAl2, MgCu1.07Al0.93 and Mg(Cu1−xAlx)2 (x = 0.465) ternary Laves phases. The coordination polyhedra of the atoms in this structure are icosahedra (Cu atoms), slightly distorted icosahedra and bicapped hexagonal antiprisms (Al/Cu statistical mixture), and Frank–Kasper and distorted Frank–Kasper polyhedra (Li atoms). All interatomic distances indicate metallic type bonding.  相似文献   

17.
The experimental investigations of phase equilibria in the K2SO4-KCl-H2O system at temperatures to 500°C and pressures to 100 MPa were directed to elucidate the phase transformation sequence that leads to the heterogenization of the supercritical fluid whose existence field propagates from the K2SO4-H2O binary subsystem to the ternary system. We suggest that fluid heterogenization in the title ternary system is accompanied by the transformation of the metastable immiscibility field to stable equilibria at elevated temperatures (near 460°C) and unexpectedly high pressures (~60 MPa), despite the presence of a vapor phase.  相似文献   

18.
Experimental excess molar volumes for the ternary system {x1MTBE+x21-propanol+(1–x1x2)nonane} and the three involved binary mixtures have been determined at 298.15 K and atmospheric pressure. Excess molar volumes were determined from the densities of the pure liquids and mixtures, using a DMA 4500 Anton Paar densimeter. The ternary mixture shows maximum values around the binary mixture MTBE+nonane and minimum values for the mixture MTBE+propanol. The ternary contribution to the excess molar volume is negative, with the exception of a range located around the rich compositions of 1-propanol. Several empirical equations predicting ternary mixture properties from experimental binary mixtures have been applied.  相似文献   

19.
Excess molar enthalpies for two ternary mixtures of {x 1 tributylphosphate (TBP) + x 2 water + x 3 methanol/ethanol} were measured at T = 298.15 K and atmospheric pressure using a TAM Air isothermal calorimeter, by mixing methanol or ethanol with binary mixtures of (water + TBP). Excess enthalpies for initial binary mixtures of (water + TBP) were also measured under the same conditions, which showed phase separation at low molar fraction of TBP. Experimental results of the ternary mixtures were expressed with constant excess molar enthalpy contours on Roozeboon diagrams.  相似文献   

20.
The miscibility behavior of ternary blends made by the addition of di(ethyl-2 hexyl) phthalate (DOP) to a mixture of chlorinated polymers was investigated by differential scanning calorimetry. Two chlorinated polymer mixtures were selected: polyvinyl chloride (PVC) with a chlorinated polyethylene containing 48 wt% Cl (CPE48), and PVC with a chlorinated PVC containing 67 wt% Cl (CPVC67). Each binary DOP/chlorinated polymer pair is miscible whereas PVC/CPE48 and PVC/CPVC67 blends are immiscible. DOP/CPE48/PVC and DOP/PVC/CPVC67 ternary blends containing, respectively, more than 55 and 20% DOP exhibit a single glass transition temperature (Tg). The spinodal between the one-Tg zone and the two-Tg zone is symmetrical in the two cases. At high DOP concentrations, a quantitative analysis of the results leads to the conclusion of the presence of a true ternary phase. At low DOP concentrations where two Tgs are observed, the DOP is distributed equally between the two chlorinated polymers forming, in the DOP/CPE48/PVC case for instance, two binary DOP/CPE48 and DOP/PVC phases. The broad immiscibility zone observed in the DOP/CPE48/PVC ternary blend as compared to the DOP/PVC/CPVC67 blend appears to be mainly caused by the high molecular weight of CPE48, as compared with PVC and CPVC67. © 1994 John Wiley & Sons. Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号