首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The “knitting pattern” morphology was obtained via blending of two polystyrene-block-polybutadiene-block-poly(methyl methacrylate) triblock copolymers. This demonstrates that blending of block copolymers is a useful way to design periodic superstructures by taking advantage of the self-assembling nature of microphase separated block copolymers.  相似文献   

2.
The blend membranes of polystyrene-block-polyisoprene-block-polystyrene and polyethylene-block-poly(ethylene glycol)-block-polycaprolactone were designed using the phase inversion technique. The poly(methyl methacrylate)-coated gold nanoparticles are around 40–50 nm in size. The honeycomb-shaped nanopores were uniformly dispersed in polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles blend membranes. There was a 16% increase in tensile strength and a 33% increase in tensile modulus of polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles 1 relative to the neat membrane. With 1 wt% nanoparticles, the membrane showed a higher water flux of 59.2 mL cm?2 min?1 and a salt rejection ratio of 25.4%, while the polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone membrane without poly(methyl methacrylate)-coated gold nanoparticles had lower flux (43.8 mL cm?2 min?1) and salt rejection (18.5%).  相似文献   

3.
Molecular dynamics is applied to the system of polystyrene-block-poly(methyl methacrylate). The simulation shows that for the block copolymer system, a layered structure, which reflects microphase separation, is obtained and this structure is stable. In order to elucidate that the formation of the layered structure is reasonable, some static properties such as the radial distribution function and the dipole moment are analyzed in some detail.  相似文献   

4.
5.
The synthesis of an amphiphilic triarm star copolymer based on polystyrene, poly(ethylene oxide) and poly(ε-caprolactone) block has been achieved by a novel strategy which consists in the preparation of a diblock copolymer, polystyrene-block-poly(ethylene oxide), having a protected anionic initiator group at the junction of the two blocks. After deprotection, this function is activated by a coloured and weakly basic carbanion. The generated alcoholate initiates the ε-caprolactone anionic polymerization.  相似文献   

6.
The closed-loop phase behavior of deuterated polystyrene-block-poly(n-pentyl methacrylate) copolymer (dPS-PnPMA) was investigated by small-angle neutron scattering (SANS) and temperature-dependent Fourier transform infrared (FT-IR) spectroscopy. The effect of hydrostatic pressure on the transition temperatures was studied by using SANS. We found that dPS-PnPMA has large pressure coefficients of transition temperatures (dT/dP = ±725 °C/kbar). Since this block copolymer exhibited excellent baroplastic property, it was easily molded into a desirable shape at a relatively low temperature under medium pressure. On the other hand, commercially available polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers were not molded at the same processing condition. Finally, we investigated the driving force inducing the closed-loop phase behavior by using temperature-dependent FT-IR.  相似文献   

7.
In recent years, the dewetting behavior of block copolymer films has been studied a lot, but that of random copolymer films was rarely studied. In this study, effects of film thickness and solvent vapor annealing duration (0 s–24 h) on the dewetting behavior of the spin-coated poly(styrene-co-acrylonitrile) (SAN) random copolymer films were mainly investigated by atomic force microscopy and contact angle method for the first time. The film thicknesses of the SAN films prepared at different concentrations were characterized by X-ray reflectometry to be 6–34 nm. With the annealing of acetone vapor, the SAN films first appear holes and then rupture into droplets which fuse and break periodically. The periodic evolutions of the droplets are due to the preferred affinity of acetone molecules with the AN segments and the change of surface energy. This phenomenon is different from the single evolutions in the spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films. This illustrates the interactions between AN segments and the substrate are stronger than those between PMMA segments and the substrate in the spin-coated films.  相似文献   

8.
This paper describes the synthesis and characterization of polystyrene-block-poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate)-block-polystyrene and of poly(ethylene glycol)-black-poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate)-block-poly (ethylene glycol) block copolymers. The ABA-triblock copolymers were synthesized by condensation reaction of telechelic poly(2,2'-dimethyl-4,4'-biphenylene phenylterephthalate) with ω-hydroxy polystyrene and ω-hydroxy poly(ethylene glycol) methyl ether of different molecular weights prepared by anionic polymerization. Some aspects of the liquid crystalline behavior and the phase transitions with respect to the block copolymer composition will be discussed.  相似文献   

9.
Summary: A pH-responsive ABA triblock copolymer, comprising poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) [PMMA-b-PDEA-b-PMMA], has been cast into thin films with a well-defined microstructure. Small Angle X-ray Scattering (SAXS) and Atomic Force Microscopy (AFM) studies confirm that this copolymer forms a hydrogel consisting of PMMA spheres embedded within a polybase PDEA matrix, with the PMMA domains acting as physical cross-links. The hydrogel has a pH-reversible coil-globule transition at around pH 4.5. This responsive physical property was exploited by immersing a sample of copolymer hydrogel in an aqueous solution containing a cyclic pH-oscillating reaction, whereby the pH was continuously oscillated above and below the transition pH so as to induce autonomous volume transitions. The changes in microscopic and macroscopic length scales correlate closely during (de)swelling cycles, with affine behaviour occurring over five orders of magnitude.  相似文献   

10.
Ordered aggregation of thiol-passivated Au nanoparticles in a diblock copolymer polystyrene-b-poly(methyl methacrylate) has been observed. The morphology of the diblock copolymer/Au-nanocomposite was dependent on the composition of the thiol modifier. For the thiol modifier that does not preferentially interact with one of the blocks, a perpendicular (relative to the substrate) lamellar morphology is maintained. However, for a thiol with a surfactant structure similar to one of the blocks, we observed a parallel lamellar morphology and speculate that the nanoparticles have localized at the microdomain interface. These conclusions are based on transmission electron microscopy, angle-dependent X-ray photoelectron microscopy and tensiometry. These results are consistent with theoretical predictions on the hybrid systems composed of block copolymers and nanoparticles.  相似文献   

11.
Joint micellization of two amphiphilic diblock copolymers is studied by velocity sedimentation, transmission electron microscopy, electrophoretic mobility measurements, and static light scattering. One of the diblock copolymers is a strong polyelectrolyte (polystyrene-block-poly(N-ethyl-4-vinylpyridinium bromide)), while the second one is a weakly charged or uncharged copolymer (polystyrene-block-poly(acrylic acid) or polystyrene-block-poly(4-vinylpyridine)). It is shown that the mixing of the diblock copolymers in a selective aqueous-organic solvent (DMF-methanol-water) leads to the formation of joint (hybrid) micelles and that the composition of these micelles is close to the composition of the polymer mixture. Micelles consist of an insoluble polystyrene core and a mixed corona composed of blocks of a strong polyelectrolyte and a weakly charged or uncharged copolymer. Aqueous dispersions of mixed micelles are obtained with the use of the dialysis technique, the spherical morphology of the micelles is ascertained, and their three-layered structure is proposed. The nonlinear dependence of the molecular mass of micelles on their composition is found. The decisive effect of electrostatic repulsion between strong polyelectrolyte units on the thermodynamics of micellization and the dispersion stability and molecular-mass characteristics of the mixed micelles is demonstrated.  相似文献   

12.
The existence of micelles of polystyrene-block-poly(ethylene/propene) in solutions of polystyrene in toluene was investigated. Toluene is a good solvent of both copolymer blocks whereas polystyrene and poly(ethylene/propene) are immiscible polymers. The presence of homopolystyrene at high enough concentration can induce the micellization of polystyrene-block-poly(ethylene/propene) in solution of a good solvent such as toluene. The thermodynamics of this new micelle system at a given polystyrene concentration was studied. Light scattering measurements were carried out in order to determine the critical micelle temperature (CMT) of different micellar solutions. Standard Gibbs energy, enthalpy and entropy of micellization were estimated from CMT and concentration data. The numerical values found were less negative than those found for micelle systems consisting in a block copolymer dissolved in a single selective solvent.  相似文献   

13.
Effects of adding a small amount of poly(methyl methacrylate)-block-poly(vinyl acetate) (PMMA-b-PVAc) to poly(methyl methacrylate)/poly(vinyl acetate) (PMMA/PVAc) blends with a lower critical solution temperature (LCST) phase diagram on the kinetics of late-stage spinodal decomposition (SD) were investigated by time-resolved light scattering at 160°C. It is found that the coarsening process of the structure was slowed down or accelerated upon addition of PMMA-b-PVAc depending on the composition of the block copolymer and the blend. The effect of the block copolymer on the domain size were interpreted as compatibilizing and incompatibilizing effects of the block copolymer on PMMA/PVAc blends based on the evaluation of changes in the stability limits of PMMA/PVAc with the addition of block copolymer using random phase approximation (RPA).  相似文献   

14.
The effect of the presence of different amounts of block copolymers [polystyrene-block-poly(methyl methacrylate)] on the morphology of polystyrene/poly (methyl methacrylate) composite latex particles was investigated. The block copolymers were produced in situ by controlled radical polymerization (CRP) through the addition of the second monomer to a seed prepared by miniemulsion polymerization with a certain amount of a CRP agent. With an increase in the amounts of the block copolymers, the particle morphology changed from a hemisphere morphology (for a latex without block copolymers, i.e., without the use of a CRP agent during the polymerization) to clear core–shell morphologies as a result of decreasing polymer–polymer interfacial tension © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2484–2493, 2007  相似文献   

15.
The synthesis of a poly(methyl methacrylate)-block-poly(tetrahydrofuran) (PMMA-b-PTHF) diblock copolymer was attained by the photo-living radical polymerization of methyl methacrylate using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) supported on the chain end of poly(tetrahydrofuran) (PTHF) as the macromediator. The polymerization was performed at room temperature by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) as an initiator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate as a photo-acid generator to produce the diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and PTHF blocks connected through the TEMPO. The polymerization was confirmed to proceed in accordance with a living mechanism based on linear correlations for three different plots of the first order time-conversion, the molecular weight of the copolymer versus the monomer conversion, and the molecular weight versus the reciprocal of the initial concentration of the initiator. The molecular weight distribution of the block copolymer was dependent on the molecular weight of the macromediator based on the miscibility of PMMA and PTHF.  相似文献   

16.
Patterned arrays of gold nanoparticles were fabricated using a simple dipping method that makes use of their specific interactions with nano-domains of carboxylic acid on a block copolymer template. Polystyrene-block-poly(tert-butyl acrylate) on the SU-8 photoresist pattern was selectively transformed to polystyrene-block-poly(acrylic acid). Au nanoparticles are selectively immobilized on the resulting carboxylic acid patterns to produce well-defined patterned Au nanoparticle arrays. This stable and robust template can be used to obtain any patterned nonaggregated metal or inorganic nanoparticle arrays.  相似文献   

17.
A systematic study of formation of surface patterns in block copolymer thin layers after their exposure to solvent vapors was performed. The studied effect involves layers of thickness approximately equal to the ordering size of polymers - about 45 nm. Experiments were performed on three styrene - methacrylate derivative block copolymers, synthesized by living anionic polymerization: poly(4-octylstyrene)-block-poly(butyl methacrylate), poly(4-fluorostyrene)-block-poly(butyl methacrylate) and poly(p-octylstyrene)-block-poly(methyl methacrylate). The polymers were exposed to vapors of chloroform, 1,4-dioxane, hexane, acetone and tetrahydrofuran.  相似文献   

18.
Summary: A novel amphiphilic ABCBA-type pentablock copolymer with properties that are sensitive to temperature and pH, poly(2-dimethylaminoethyl methacrylate)-block-poly(2,2,2-trifluoroethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(2,2,2- trifluoroethyl methacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA- b-PTFEMA-b-PCL-b-PTFEMA-b-PDMAEMA), was synthesized via consecutive atom transfer radical polymerizations (ATRPs). The copolymers obtained were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectroscopy, respectively. The aggregation behaviors of the pentablock copolymers in aqueous solution with different pH (pH = 4.0, 7.0 and 8.5) were studied. Transmission electron microscopic images revealed that spherical micelles from self-assembly of the pentablock copolymer were prevalent in all cases. The mean diameters of these micelles increased from 34, 46, to 119 nm when the pH of the aqueous solution decreased from 8.5, 7.0, to 4.0, respectively.  相似文献   

19.
In a dispersion polymerization, the monomer is miscible with the reaction medium, while the resulting polymer is insoluble under the same conditions. The macroscopic precipitation of the polymer is prevented by a steric stabilizer. Methyl methacrylate was polymerized in decane in presence of polystyrene-block-poly(ethylene-co-propylene) and spherical dispersion particles of poly(methyl methacrylate) (PMMA) were obtained. The static light scattering yielded molar masses of particles in the range 4 × 107 to 7 × 109 g mol−1. Dynamic light scattering provided the hydrodynamic radii from 60 to 190 nm and also information on the non-uniformity of the particles. The relations between the characteristics of the dispersion particles (concentration of components, particle mass and dimensions, molar mass of PMMA chains, surface density of stabilizing chains, etc.) were looked for. The kinetics of polymerization seems to be only little affected by the colloidal character of the system.  相似文献   

20.
In Forschung hast Du immer zu mir gesagt, Schaffe etwas!. Mein Chef, ich habe immer versucht Deinen Befehlen zu folgen. Ich widme Dir diese Veröffentlichung. Mensch, mit fünf und siebzig bist Du noch jung, schön Geburtstag!The effect of ionic impurities on the electric field alignment of lamellar microdomains in polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films was studied using transmission electron microscopy (TEM) and atomic force microscopy (AFM). At lithium ion concentrations greater than ~210 ppm, the microdomain morphology in block copolymers could be aligned in the direction of an applied electric field, regardless of the strength of interfacial interactions. Complete alignment of the copolymer microdomains, even those adjacent to the polymer/substrate interface, occurred by a pathway where the applied electric field enhanced fluctuations at the interfaces of the microdomains with a wavelength comparable to Lo, the equilibrium period of the copolymer. This enhancement in the fluctuations led to a disruption of the lamellar microdomains into smaller microdomains ~Lo in size, that, in time, reconnected to form microdomains oriented in the direction of the applied field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号