首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the synthesis and properties of oligomer chains derived from 2-oxazolines. First, poly(styrene-g-N-acetyl-ethylenimine) was prepared, and its hydrolysis gave poly(styrene-g-ethylenimine) which showed good chelating properties. Secondly, ABA type triblock copolymers were prepared in which an N-acylethylenimine chain is used as A block and ethylene oxide chain is employed as B block. These triblock copolymers showed good compatibility with Nylon 6, which were shown to posecess effective anti-electrostatic properties for Nylon 6. Thirdly, AB type block copolymers from 2-oxazolines have been prepared by using living polymerization technique. These block copolymers are soluble in water and showed good surfactant nature as reflected by surface tension (γ), when A block is consisted from N-acetyl- or N-propionylethylenimine chain (hydro-philic) and B block is made of N-tridecanoyl or N-aroylethylenimine chain (lipophilic). Finally, graft copolymers of cellulose diacetate having N-acetylethylenimine chain were prepared. It has been found by using a rheovibron that these graft copolymers are compatible with poly(vinyl chloride).  相似文献   

2.
A new methodology is successfully used for the concurrent synthesis of three different copolymers; diblock, triblock, and three‐armed star‐block copolymers of styrene and isoprene via the living anionic polymerization with control over the molecular weight and weight fractions of each block. The room temperature polymerization process has resulted in the well defined linear and radial block copolymers, when the living di‐block of poly(styrene‐b‐isoprene) was coupled using cheap and readily available malonyl chloride as a novel coupling agent giving nearly 100% yield. The resulting block copolymers have narrow polydispersity index (PDI = 1.01–1.09) with a good agreement between the calculated and the observed molecular weights. The results are further supported by fractionation of the block copolymers by reversed‐phase temperature gradient interaction chromatography (RP‐TGIC) technique followed by size exclusion chromatography (SEC). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2636–2641, 2010  相似文献   

3.
Macrocyclic poly(styrene-b-butadiene) (SB) block copolymers were prepared by coupling a living poly(styrene-b-butadiene-b-styrene) (SBS) block copolymer using a living coupling agent, 1,3-bis(1-phenylethylenyl)benzene (DDPE), or a difunctional electrophile, dimethyldichlorosilane. The living poly(styrene-b-butadiene-b-styrene) block copolymer was generated from an addition product of sec-butyllithium and DDPE. A living heteroarmed star block copolymer has been prepared by coupling two moles of monolithium polystyrene with one mole of DDPE followed by reinitiation and polymerization of the butadiene monomer. The dilithium 4-armed star block copolymer was then coupled using dimethyldichlorosilane to form a cyclic polybutadiene with two attached polystyrene branches.  相似文献   

4.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

5.
Hybrid dendritic‐linear block copolymers were made in one‐pot by convergent living anionic polymerization. Dendritic polystyrene macroinitiators were synthesized by slowly adding a mixture of either vinylbenzyl chloride (VBC) or 4‐(chlorodimethylsilyl)styrene (CDMSS) and styrene (1 : 10 molar ratio of coupling agent to styrene) to a solution of living polystyryllithium. The addition was ceased prior to the addition of a stoichiometric amount of coupling agent to retain a living chain end. To the living dendritically branched polystyrene was then added either styrene or isoprene to polymerize a linear block from the dendritic polystyrene. The resulting copolymers were characterized by gel permeation chromatography coupled with multiangle laser light scattering (GPC‐MALLS), which clearly demonstrated the formation of diblock copolymers. The diblock copolymers were further characterized by 1H NMR, which showed the presence of the two blocks in the case of dendritic polystyrene‐block‐linear polyisoprene. The measurement of intrinsic viscosity showed that the dilute solution properties of the block copolymers are greatly influenced by the dendritic portion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 152–161, 2001  相似文献   

6.
N-Methylacrylamide (NMAAm) was polymerized quantitatively by using di-tert-butyl peroxide as photosensitizer to be, for the most part, incorporated in living poly(NMAAm) radical. The living polymer radical reacted effectively with acrylate monomers to yield block copolymer. Longer alkyl chain of the acrylate monomer caused a decrease in the conversion of the second monomer. Methacrylate monomers, such as methyl methacrylate and cyclohexyl methacrylate, showed relatively low reactivities in comparison with acrylates. Styrene exhibited a much lower conversion. The resulting block copolymers showed different thermochromic behaviors in methyl benzoate from that of poly(NMAAm). This is explained on the basis of the difference between refractive indexes of the block copolymers and poly(NMAAm).  相似文献   

7.
In this work, we examined the synthesis of novel block (co)polymers by mechanistic transformation through anionic, cationic, and radical living polymerizations using terminal carbon–halogen bond as the dormant species. First, the direct halogenation of growing species in the living anionic polymerization of styrene was examined with CCl4 to form a carbon–halogen terminal, which can be employed as the dormant species for either living cationic or radical polymerization. The mechanistic transformation was then performed from living anionic polymerization into living cationic or radical polymerization using the obtained polymers as the macroinitiator with the SnCl4/n‐Bu4NCl or RuCp*Cl(PPh3)/Et3N initiating system, respectively. Finally, the combination of all the polymerizations allowed the synthesis block copolymers including unprecedented gradient block copolymers composed of styrene and p‐methylstyrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 465–473  相似文献   

8.
Various star‐shaped copolymers of methyl methacrylate (MMA) and n‐butyl methacrylate (nBMA) were synthesized in one pot with RuCl2(PPh3)3‐catalyzed living radical polymerization and subsequent polymer linking reactions with divinyl compounds. Sequential living radical polymerization of nBMA and MMA in that order and vice versa, followed by linking reactions of the living block copolymers with appropriate divinyl compounds, afforded star block copolymers consisting of AB‐ or BA‐type block copolymer arms with controlled lengths and comonomer compositions in high yields (≥90%). The lengths and compositions of each unit varied with the amount of each monomer feed. Star copolymers with random copolymer arms were prepared by the living radical random copolymerization of MMA and nBMA followed by linking reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 633–641, 2002; DOI 10.1002/pola.10145  相似文献   

9.
Polystyrene‐block‐poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) ABC triblock copolymers were synthesized by sequential living anionic polymerization. Their solution properties were investigated in toluene, which is a bad solvent for the middle block. Spherical micelles are formed, which consist of a poly(2‐vinyl pyridine) dense core bearing polystyrene and poly(methyl methacrylate) soluble chains at the corona. These micelles exhibit the architecture of heteroarm star copolymers obtained by “living” polymerization methods. The aggregation numbers strongly depend on the length of the insoluble P2VP middle block, thus remarkably affecting the size of the micelles.  相似文献   

10.
Poly[styrene-co-(N-vinylcarbazole)] copolymers with controlled molecular weights and narrow polydispersities were synthesized by nitroxide-mediated “living” free radical copolymerization using an initiator/capping agent system consisting of benzoyl peroxide (BPO) and the stable nitroxyl radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO). The copolymerization behaves in a “living” fashion and allows the synthesis of poly[styrene-co-(N-vinylcarbazole)]/polystyrene block copolymers via a controlled chain-extension reaction of the prepared copolymers with styrene.  相似文献   

11.
Difference in thermal behavior of presumed polypropylene-b-polyethylene block copolymers(PP-PE) and corresponding PP+PE blends was studied. Different views in the literature were unified in our observation that faster cooling rate yielded only one exothermal peak for the blends, while slower cooling rates revealed both PP and PE exothermal peaks. Further details on when a single or double exothermal peaks would appear are discussed. Melting and crystallization temperatures for both PP and PE in blends were found to be a few degrees higher than for PP and PE in block copolymers. Thus, thermal analysis can be used to identify PP-PE block copolymers. These phenomena and the lower △H_f-values of PP and PE in block copolymers than the △H_f-values of pure homo-PP and -PE (for PE even more so) are explained in terms of restricted block movement due to covalent bond between blocks and of crystallization processes in block copolymers. The presence of block structure in the PP-PE samples studied is inferred.  相似文献   

12.
The synthesis of well defined and monodisperse (Mw/Mn ≤ 1.2) narrow molecular weight distribution poly (2-vinylpyridine)-poly (t-butyl methacrylate) (P2VP-PTBMA) AB block copolymers is carried out by initiation of 2-vinylpyridine polymerization by 1,1-diphenylhexyllithium in THF at-78°C, followed by addition of TBMA and termination at ?78°C using MeOH. The formation of the BAB block copolymer is carried out in a similar fashion except that 1,4-dilithio-1,1,4,4-tetraphenylbutane is used as initiator. The corresponding synthesis of P2VP-PMMA block copolymers is carried in a similar manner, except that 1-2 equivalents of TBMA is used to end-functionalize the living P2VP before the addition of MMA. Without the addition of TBMA, trimodal molecular weight distributions in P2VP-b-PMMA are obtained. All the block copolymers are characterized by Size Exclusion Chromatography (SEC), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC). © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Low‐cost, highly active and versatile amino‐bis(phenolate) cobalt complexes are developed. The cobalt complexes can control living polymerization of different categories of monomers including lactide (LA) by immortal ring‐opening polymerization in argon and even in air and acrylate via living radical polymerization (LRP). The cobalt‐based catalysts were used for copolymerization of LA and acrylate. The immortal polymerization of LA using the cobalt complexes as initiators proceeds in argon and even in air and without the requirement for extensive drying techniques or inert atmosphere whilst retaining end‐group fidelity. The cobalt complexes are used to mediate LRP of t‐butyl acrylate (tBA) in methanol. The block copolymerization of LA and tBA catalyzed by single‐site cobalt organometallic catalyst is also reported for the first time. This cobalt system offers a versatile and green way to produce homopolymers and block copolymers.  相似文献   

14.
Amphiphilic block copolymers of vinyl ethers (VEs) of the type —[CH2CH(OCH2CH2OR)]m—[CH2CH(OiBu)]n—were synthesized by living cationic polymerization, where R is a D-glucose residue, and m and n are the degrees of polymerization (m = 20–50; n = 11–89). To obtain them, sequential living block copolymerization of isobutyl vinyl ether (IBVE) and the vinyl ether carrying 1,2:5,6-diisopropylidene-D -glucose residue was conducted by using the HCl adduct of IBVE, CH3CH(OiBu)Cl, as initiator in conjunction with zinc iodide. These precursor block copolymers had a narrow molecular weight distribution (M̄w/M̄n ∼ 1.1) and a controlled composition. Treatment of them with a trifluoroacetic acid/water mixture led to the target amphiphiles. The solubility of the amphiphilic block copolymers in various solvents depended strongly on composition or the m/n ratio. Their solvent-cast thin films were observed, under a transmission electron microscope, to exhibit various microphase-separated surface morphologies such as spheres, cylinders, and lamellae, depending on composition. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Ferrocenylmethyl methacrylate (FMMA) has been polymerized by using LiAlH4–tetramethyl-ethylenediamine initiation to form living polymers in high vacuum systems. The addition of methyl methacrylate or acrylonitrile to these living systems gave the block copolymers FMMA-block MMA and FMMA-block AN. The anions were not nucleophilic enough to initiate styrene polymerization. Therefore, living polystyrene was prepared (sodium naphthalide initiation in THF at ?78°C) and upon FMMA addition, styrene-block FMMA copolymers were formed. Extraction, precipitation, and gel-permeation chromatography studies were performed to examine the purity of the block copolymers.  相似文献   

16.
Three methods for the formation of polymer networks from bifunctionally growing polymers obtained by cationic ring-opening polymerization are described. The first method is based on the irreversible inter-molecular termination reaction of thietane polymerizations. Starting from bifunctionally living poly(THF) a new kind of polymer structure consisting of ABA block copolymers with cross-linked A-segments is obtained. The second method is the direct coupling of active species with primary amines or ammonia. The third method consists in transformation of the living end groups of poly(THF) into triethoxysilane end groups, followed by cross-linking by addition of water and a trace of acid.  相似文献   

17.
Summary: We report on various synthetic procedures for the preparation of biodegradable and biocompatible poly(lactide-co-aspartic acid) block copolymers based on natural monomeric units – lactic acid and aspartic acid. Multiblock poly(lactide-co-aspartic acid) copolymers of different comonomer composition were synthesized by heating a mixture of L-aspartic acid and L,L-lactide in melt without the addition of any catalyst or solvent and with further alkaline hydrolysis of the cyclic succinimide rings to aspartic acid units. Diblock poly(lactide-co-aspartic acid) copolymers with different block lengths were prepared by copolymerization of amino terminated poly(β-benzyl-L-aspartate) homopolymer and L,L-lactide with subsequent deprotection of the benzyl protected carboxyl group by hydrogenolysis. The differences in the structure, composition, molar mass characteristics, and water-solubility of the synthesized multiblock and diblock poly(lactide-co-aspartic acid) copolymers are discussed.  相似文献   

18.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
AB and ABA block copolyesters based on racemic poly(α-methyl-α-n propyl-α-propiolactone) (PMPPL) as a “soft” or elastomeric segment and polypivalolactone (PPL) as a “hard” or crystallizable segment have been synthesized and compared with random copolymers of the same composition. X-ray studies show the coexistence of polymorphic crystal forms for a given polymer in a given sample. Thermal and dynamic mechanical properties give clear evidence of heterophase structure corresponding to segregation of PPL and PMPPL. The crystalline phase clearly provides thermally reversible crosslinking in the ABA block copolymers. On stretching, the planar zigzag form of PMPPL is observed. Because of the domain structure, moduli of ABA samples are higher than those of PMPPL and their tensile strengths are similar to those of comparable styrene-butadiene block copolymers. The polymer synthesis was achieved by sequential monomer addition with tetrahexyl ammonium benzoate as initiator. For the ABA polymers the diammonium salt of sebacic acid provided a di-functional initiator. The agreement between calculated and observed molecular weights testify to the “living” character of this polymerization reaction.  相似文献   

20.
A facile synthetic approach of conjugated rod‐coil block copolymers with poly(para‐phenylene) as the rod block and polystyrene or polyethylene glycol as the coil block was developed. The block copolymers were synthesized through a TEMPO‐mediated radical polymerization of 3,5‐cyclohexadiene‐1,2‐diol‐derived monomers (diacetate, dibenzonate, and dicarbonate), followed by thermal aromatization of the polymer precursor. The living character of the polymerization and the structure of the copolymers were studied by NMR, GPC, TGA, and UV–vis spectroscopy. The average conjugation lengths of the copolymers were calculated according to their maxima in UV–vis spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 800–808, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号