首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, a novel fluorine-containing polyurethane (FPU) was prepared by introducing long chain fluorinated polyacrylate into PU. The FPU was prepared from dodecafluoroheptyl methacrylate (DFMA), β-mercaptoethanol (β-ME), methacryloyloxyethyl isocyanate(MOI), hydroxyethyl methylacrylate (HEMA), iso-butyl acrylate(I-BA), polyether diol (N220) and toluene diisocyanate (TDI). The structure of product for every step was confirmed by Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR) spectra. It was found that when the DFMA content increased from 0 to 12%, thermal stability was improved in some degree; the hardness, the adhesion and the tensile strength increased; the swelling degree in water, NaOH solution and HCl solution decreased; the solvent resistance in hexane and butanone improved to some degree; the contact angle of water and ethylene glycol increased; the surface free energy decreased. XPS tests indicated fluorine migrated to surface.  相似文献   

2.
Unsaturated perfluoroalkyl esters derived from undecylenic acid: CH2?CH? (CH2)8? COO? CH2? CH2? RF (with RF?C6F13, 2a and RF?C8F17, 2b ) and C8F17? (CH2)10? COO? CH2? CH?CH2, 2c were prepared with excellent yields. Their hydrosilylation by methylhydrodimethylsiloxane copolymers of various Si? H contents gives new fluorinated polysiloxanes which were examined by 1H- and 13C-NMR, GPC, differential scanning calorimetry, and optical polarizing microscopy. Polymers derived from compounds 2a and 2b exhibit mesomorphic structures. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The synthesis of new α,ω‐dihydrosilane hybrid fluorinated polysiloxanes is described via the polycondensation between a diallyl perfluorinated compound and tetramethyldisiloxane. Control over the size of the oligomers is possible when the reaction is performed in two steps. The length of the polysiloxane chains influences the glass‐transition temperature and the thermal stability of the fluorinated oligomers: the higher the length is, the higher the glass‐transition temperature and the thermal stability are. The synthesized compounds have been characterized with 1H, 19F, and 29Si NMR spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4485–4492, 2002  相似文献   

4.
A series of fluorinated block copolymers with different fluorinated block lengths and compositions were synthesized by atom transfer radical polymerization (ATRP), and then the block copolymers containing sulfonic groups with various sulfonation levels were successfully prepared further via a sulfonation reaction. These well‐defined block copolymers were characterized by means of Fourier transform infrared (FTIR), 1H‐nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The surface activities of the fluorinated block copolymers containing sulfonic groups in N‐methyl pyrrolidone solution and the surface properties of the films prepared from such a solution were examined, and the experimental results showed that the fluorinated block copolymers exhibited a high surface activity in solution and quite a low solid surface energy of films, even though they contain hydrophilic sulfonic groups. The critical surface tensions of these copolymers were estimated and were comparable to that of polytetrafluoroethylene. Even more interestingly, the surface activities of the block copolymers containing sulfonic groups or sodium sulfonate groups in aqueous solution were also measured. It was found that the surface activity in aqueous solution was weaker than that in N‐methyl pyrrolidone solution and depended on both the length of the fluorinated block and the sulfonation level of the block copolymers. The surface properties of the films prepared from the block copolymers in aqueous solution were tested, and most of these films exhibited a hydrophilic surface property. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4809–4819, 2004  相似文献   

5.
The synthesis of perfectly alternating fluorinated polyimide–fluorinated polyhybridsiloxane block copolymers (FPI‐FPHSX) was achieved through polyhydrosilylation of α,ω‐diallylfluorinated polyimides (AT‐FPI) and α,ω‐dihydrosilane fluorinated–polyhybridsiloxanes (HT‐FPHSX). A series of three FPI‐FPHSX containing 15, 38, and 56 wt % of polyimide was synthesized and characterized by tuning the number‐average molecular weight either of the hard polyimide segments or of the soft polyhybridsiloxane segments. The influence of the soft and hard segment lengths on the behavior of the thermoplastic elastomer material was studied (hardness, surface tension, thermal stability). The FPI‐FPHSX block copolymers thermomechanical properties are also reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 200–207, 2004  相似文献   

6.
A novel fluorinated chain extender, (1‐(ethyl(2‐hydroxyethyl)amino)‐3‐ ((3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl)oxy)propan‐2‐ol) (FPO), was synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. Poly (ether urethane)s containing various amounts of the chain extender with fluorinated side chains (FPUs) were prepared by isophorone diisocyanate (IPDI), polytetra‐methylene‐ether‐glycol (PTMG), 3‐aminopropyltriethoxysilane (KH‐550), and 1,4‐butandiol (BDO). Films of FPUs were investigated by water absorption, contact angle, pencil hardness, adhesive force, and thermal analysis. Coating FPUs on micro‐nano concave‐convex structure plate realizes superhydrophobic performance. Scanning electron microscope (SEM) and atomic force microscopy (AFM) demonstrated that there is a lot of irregular concave‐convex structure, which forms a typical air cushion model. X‐ray photoelectron spectroscopy (XPS) analysis showed that surface fluorine content is 165% more than that of film average fluorine content. The superhydrophobic plate with 10% or higher F‐containing FPUs coating is of outstanding chemical corrosion resistance, excellent solvent resistance, and wear resistance.  相似文献   

7.
8.
9.
Novel PMDA-PAPD/silica hybrid polymers were synthesized by the sol-gel process. Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids, (condensed siloxane bonds designated as Q1, Q2, Q3, Q4, wth 3-aminopropyltriethoxysilane having mono-, di-, tri-, tetra-substituted siloxane bonds is designated as T1, T2 and T3). The results revealed that Q3, Q4 and T3 are the major microstructure elements in forming a network structure. The surface morphology, particle size, crystallinity and the thermal stability of the hybrids were investigated using Scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). SEM and TEM revealed that the hybrids were nanocomposites. The XRD indicated that covalent bonding (Si-O-Si) between the organic and inorganic components enhanced miscibility. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The heat capacities of some materials were reported for the temperature range 273 K and 363 K as no thermal anomaly was found in this temperature range.  相似文献   

10.
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175  相似文献   

11.
A novel fluorinated reversible addition‐fragmentation chain transfer agent, S,S‐di‐pentaflourobenzyl trithiocarbonate (DPFBTTC), was designed and synthesized. DPFBTTC and dibenzyl trithiocarbonate (DBTTC) were applied in the polymerization of dodecafluoroheptyl methacrylate (DFHMA), hexafluorobutyl methacrylate (HFBMA), and trifluoroethyl methacrylate (TFEMA) in scCO2. The polymerization processes were monitored using a high‐pressure in‐situ NIR, through which the polymerization kinetics was investigated and the controllability of DPFBTTC was evaluated. It is found that the controllability of DPFBTTC presented in the order of DFHMA > HFBMA > TFEMA, indicating that DPFBTTC may fit for the controlled polymerization of the highly fluorinated methacrylates. Moreover, the controllability of DPFBTTC is verified to be better than that of DBTTC, possibly resulting from the enhanced accessibility/miscibility of DPFBTTC to the fluorinated monomer used. We believe that the employment of DPFBTTC and the resulted introduction of stable pentafluorobenzyl end groups to the polymer are expected to distinctly improve performances of the polymer, and thus will meet the special application requirements. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 825–834  相似文献   

12.
13.
Poly(vinylidene chloride‐co‐vinylchloride)/organically modified fluorinated synthetic mica (MEE) (VDC‐VC/MEE) nanocomposites were prepared by melt blending of VDC‐VC copolymer with MEE, in the presence of dioctyl phthalate (DOP) which acted as a plasticizer and a cointercalating agent. The nanostructure, thermal, and dynamic mechanical properties of the VDC‐VC/MEE nanocomposites were studied by wide angle X‐ray diffractometer (WAXD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). It was found that partially intercalated and partially exfoliated structures coexisted in VDC‐VC/MEE nanocomposities. Below 8 wt % MEE content, the intercalation effect of nanocomposites decreased with increasing the MEE content. Under a nitrogen atmosphere, VDC‐VC/MEE nanocomposites exhibited a single step thermal degradation behavior. The nanostructure of VDC‐VC/MEE can effectively prevent volatile gases from being released, and thus enhances its thermal stability. The thermal stability of VDC‐VC/MEE nanocomposites is strongly related to the morphology of nanocomposites and the degraded composites structure. DMA revealed a significant improvement in the storage modulus within the testing temperature range. The increase in storage modulus depends on the MEE content, which is attributed to the dispersed phase morphology. The glass transition temperature of VDC‐VC/MEE nanocomposites is affected by the chain mobility in the nanocomposites rather than the aggregative morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1214–1225, 2008  相似文献   

14.
A series of codendrimers constituted by the first five generations of poly(propylene imine) (PPI) ionically substituted with 2H,2H,3H,3H‐perfluoroundecanoic acid (af) and undecanoic acid (ac) in a fixed ratio (1:3) (af:ac) have been synthesized and their supramolecular organization has been investigated both in the liquid crystalline state and on a surface. Incompatibility generated by combining fluorinated and perhydrogenated chains in the same molecule causes a peculiar mesomorphic behavior depending on the generation of the codendrimers. Thus smectic A, frustrated smectic A or rectangular columnar mesophases have been detected. Despite their different liquid crystalline organization, they are capable to self‐assemble in homogeneous molecular length layers on a surface, namely mica as revealed by atomic force microscopy (AFM) experiments. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49: 278–285, 2011  相似文献   

15.
The title compounds of the type R-C(=NiPr) (-N′ iPrSiMe3) (with R = Me or nBu) as potential chemical vapor deposition (CVD) precursors have been synthesized and characterized by 1H, 13C, and 29Si NMR spectroscopy as well as by EI-MS and elemental analysis where necessary. Thermal properties, including stability, volatility, transport behavior, and vapor pressure, were evaluated by thermogravimetric analysis to confirm that they are suitable for the CVD procedure. Deposition was accomplished in a hot wall CVD reactor system, which qualitatively verified the ability of these compounds as CVD precursors.  相似文献   

16.
New aromatic diamines substituted with a trifluoromethyl group in the side chain, 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, and 3,5‐diamino‐1‐[(4′‐trifluoromethyl phenoxy) phenyl] benzamide were synthesized and characterized and used to prepare polyimides by a one‐step high‐temperature polycondensation method. Experimental results indicated that the prepared polyimides possess good solubility in strong organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylformamide, and N,N′‐dimethylacetamide. Homogeneous solutions with solid contents as high as 15–20% can be prepared, which are stable for storing longer than 2 weeks at room temperature. The polyimides exhibited glass‐transition temperatures of 249–292 °C and good thermal stability. The PI‐Ic and PI‐IIIc films prepared by casting the fully imidized polymer solutions showed good transparency with cutoff wavelengths at 320–330 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1572–1582, 2002  相似文献   

17.
A series of chemical vapor deposition (CVD) precursors have been synthesized by a single-step reaction of 1,1,3,3-tetramethylguanidine and a variety of silicon chlorides. The structures of the 1,1,3,3-tetramethylguanidinate-based compounds were verified by 1H NMR, 13C NMR, XPS, EI-MS, and elemental analysis. The thermal stability, transport behavior, and vapor pressures of these compounds were evaluated by simultaneous thermal analyses (STA). These compounds are highly stable and those in liquid form are very volatile. Silicon carbonitride (SiCN) thin films were prepared by using bis (tetramethylguanidine)-dimethyl-silane as the precursor in helicon wave plasma chemical vapor deposition (HWP-CVD). The properties of the films were investigated by SEM, AFM, and XPS. The results showed that the films have good uniformities, low friction coefficient, and high hardness, enabling the films for fabrication of semiconductor devices.  相似文献   

18.
A series of diblock copolymers composed of methyl methacrylate and 2-perfluorooctylethyl methacrylate (PMMA144-b-PFMA n ) with various PFMA block lengths were prepared by atom transfer radical polymerization (ATRP). The surface structures and properties of these polymers in the solid state and in solution were investigated using contact angle measurement, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, surface tension and dynamic laser light scattering (DLS). It was found that with increasing PFMA block length, water and oil repellency decreased, the ratio of F/C increased with increasing film depth, and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased. When the number of PFMA block units reached 10, PMMA segments were detected at the copolymer surface, which was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interfacial structure at the air/liquid interface, which in turn affects surface structure formation during solution solidification. The results suggest that copolymer solution properties play an important role in structure formation on the solid surface. Supported by the National Natural Science Foundation of China (Grant Nos. 50573069 and 20704038) and Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT 0654)  相似文献   

19.
Silica‐supported CuBr/pyridylmethanimine (PMI) complexes that facilitate the atom transfer radical polymerization of methyl methacrylate have been prepared and characterized. Four different synthetic routes, including multistep‐grafting (M1), two‐step‐grafting (M2), one‐pot (M3), and preassembled‐complex (M4) methods, have been evaluated on three different silica supports (mesoporous SBA15 with 48‐ and 100‐Å pores and nonporous Cab‐O‐Sil EH5). The resulting solids have been characterized by a battery of techniques, including thermogravimetric analysis/differential scanning calorimetry, FT‐Raman spectroscopy, 13C and 29Si magic‐angle‐spinning and cross‐polarity/magic‐angle‐spinning spectroscopy, low‐temperature nitrogen physisorption, and elemental analysis. The combination of elemental analysis and spectroscopic results has indicated that a variety of different surface species likely exist for most catalysts, including copper species that are both monocoordinated and biscoordinated by PMI ligands, and PMI‐free copper bromide species interacting with the silica surface. M4 appears to give a material that has the smallest amount of the uncomplexed ligand (by FT‐Raman spectroscopy) and is, therefore, the most homogeneous. After M4, the metallation efficiency decreases in the order M2 ≥ M3 > M1, with M1 giving a material with a highly heterogeneous surface composition. The ligand loading on all the catalysts has been determined to be approximately 1 mmol/g of SiO2, with Cab‐O‐Sil‐supported materials giving much higher ligand densities because of its lower surface area. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1367–1383, 2004  相似文献   

20.
The possibility of the cocrystallization of random fluorinated tetrafluoroethylene copolymers was investigated with differential scanning calorimetry and wide‐angle X‐ray scattering. In particular, mixtures composed of poly(tetrafluoroethylene)‐co‐(hexafluoropropylene) containing 8 or 1 mol % comonomer or poly(tetrafluoroethylene)‐co‐perfluoromethylvinylether (2–10 mol % comonomer) were examined. The extent of cocrystallization was determined by the difference in the comonomer content, being higher when the difference was lower, and it was favored when quenching from the melt state was adopted. Nevertheless, a key to determining the extent of cocrystallization was the behavior of counits with respect to inclusion or exclusion from the crystal lattice: when the components were different with respect to this behavior, they were not likely to be miscible in the crystal state even if the difference in the comonomer content was low. Moreover, the similarity in the crystallization rates between the components played an important role: the cocrystallization decreased as the difference in the crystallization rate increased until, when the difference became high enough, the blend became immiscible. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1477–1489, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号