首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of the interface between a polymer melt and a solid wall are studied over a wide range of temperatures by dynamic Monte Carlo simulations. It is shown that in the supercooled state near the glass transition of the melt an “interphase” forms, the structure of which is influenced by the wall. The thickness of this interphase is determined from the monomer density profile near the surface and is strongly temperature dependent. At low glass-like temperatures it is larger than the bulk radius of gyration of the chains.  相似文献   

2.
A chemically realistic model of 1,4-polybutadiene confined by graphite walls in a thin film geometry was studied by molecular dynamics simulations. The chemically realistic approach allows for a quantitative determination of a variety of experimentally accessible relaxation functions (e.g., dielectric, NMR, or neutron scattering responses). The simulations yield these experimental observables. Additionally, the simulations can be resolved as a function of distance to the solid interface on a much finer scale than experimentally possible, providing a detailed mechanistic picture of the segmental and large scale motions of polymers in the interfacial region between bulk polymer melts and solid walls. Extending the study of 1,4-polybutadiene on graphite to temperatures close to the glass transition temperature, we also address the question to what extent growing length scales associated with the glass transition influence the melt dynamics in the interphase. It was found that there is an interplay of this intrinsic slowing down with the adsorption/desorption kinetics of the chains close to the wall. It is argued that the monomer density changes near the wall can overcome the effect of rotational barriers only in a region of about 2 nm next to the wall.  相似文献   

3.
Earlier studies from this laboratory on the polymerizations of acrylic acid and acrylonitrile under precipitating conditions have shown that the auto-acceleration is not caused by non-stationary conditions resulting from the precipitation of growing chains (“occlusion effect”) but by a “matrix effect”, an oriented association complex between the monomer and the polymer formed in the early stages of the reaction leading to assisted propagation. In the present work, a non-polar monomer-polymer system was selected in which molecular associations are unlikely. It was found that when polystyrene precipitates as a fine powder (in diluted monomer solutions in alcohols) auto-acceleration is observed but its extent drops with increasing rate of initiation and increasing temperature. Such situations do not arise in polymerizing systems in which a “matrix effect” operates. The study of the post-polymerization and of the swelling of polystyrene in styrene (10-propanol (90) mixtures) led to the conclusion that polystyrene in equilibrium with this mixture exhibits a glass transition temperature at ca 50°. The various results obtained in this study conform with the assumption of an occlusion effect. The growing chains being buried in the precipitated polymer, chain termination is severely restricted and becomes the determining step in the polymerization.  相似文献   

4.
Water sorption was determined and dynamic-mechanical measurements made on dry and water-containing systems. Different types of surface treatments of the glass fiber were studied. Immobilization of polymer chains in the interphase is determined by the nature of the curing system, annealing conditions, and surface treatment of glass fibers. Penetrating water can be found at three kinds of locations in the composite; water in the interphase has different properties than water in the polymer matrix and in microvoids. This fact can be used as a microscopic probe in epoxy-containing composites. Water content depends on the density of polar groups and the density of the network. At higher temperatures water causes crazes, at lower it mainly acts as a plasticizer. Water in crazes does not affect the glass transition temperature Tg, but it decreases (tan δ) and weakens the material. As long as water mainly goes into swelling, energy transfer between the resin and the matrix is not affected. The reinforcement then works as it should. The results demonstrate the importance of interphase properties on the behavior of the composite.  相似文献   

5.
The kinetics of the γ-ray-initiated polymerization of acrylonitrile in bulk are reexamined in broad ranges of temperatures and radiation dose rates. The discussion of the results coupled with an analysis of earlier data indicate that the polymerization of acrylonitrile proceeds by different mechanisms depending on the reaction temperature. Above 60°C the precipitated growing chains recombine readily; therefore, the autoaccelerated conversion curves cannot be accounted for by an “occlusion effect.” It is suggested that autoacceleration is caused by a fast propagation taking place in oriented monomer aggregates which result from dipole-dipole association of the monomer with the polymer chains formed in the early stages of the reaction (“matrix effect”). Below 10°C the precipitated growing chains are buried in the dead polymer and monomer diffusion toward the occluded chain ends is very limited (“occlusion effect”). Between 10 and 60°C the system gradually changes from one dominated by “occlusion” to one where the “matrix effect” determines the kinetic behavior. The conclusion based on kinetic data is in agreement with results obtained from studies of the postpolymerization in these various systems.  相似文献   

6.
When a polymer chain in solution interacts with an atomically smooth solid substrate, its conformational properties are strongly modified and deviate substantially from those of chains in bulk. In this work, the interplay of two competing transitions that affect the conformations of polymer chains near an energetically attractive surface is studied by means of Monte Carlo simulations on a cubic lattice. The transition from an extended to a compact conformation of a polymer chain near an attractive wall, as solubility deteriorates, exhibits characteristics akin to the “coil-to-globule” transition in bulk. An effective θ-temperature is determined. Its role as the transition point is confirmed in a variety of ways. The nature of the coil-to-compact transition is not qualitatively different from that in the bulk. Adsorbed polymer chains may assume “globular” or “pancake” configurations depending on the competition among adsorption strength, cohesive energy, and entropy. In a very relevant range of conditions, the dependence of the adsorbate thickness on chain-length is intermediate between that of 3-d (“semidroplets”) and 2-d (“pancake”) objects. The focus of this study is on rather long polymer chains. Several crucial features of the transitions of the adsorbed chains are N-dependent and various aspects of the adsorption and “dissolution” process are manifested clearly only at the “long chain” limit. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2462–2476, 2009  相似文献   

7.
Thermal analysis of poly-methylmethacrylate (PMMA) impregnated porous gel silica glasses confirms that the PMMA chains form hydrogen bonds with the pore surface silanol groups. The adopted conditions for the insitu polymerisation result in about 4% of residual monomers trapped in the polymer, most of them in the amorphous structure. The polymer and monomer mixture takes up the whole of the free pore volume. Most of the residual monomer polymerises during the DSC scans above the glass transition temperature providing an excellent probe for the weak glass transition. Polymerisation in the gel silica glass medium affects the glass transition temperature, the length of polymer chains, and the degree of polymerisation.  相似文献   

8.
The aim of this third part is to analyze the structure and properties of the interfacial region between carbon fibers and PEEK as a function of different thermal conditioning treatments. First, it is shown by means of optical microscopy that the interfacial zone is not different from the bulk matrix when standard cooling conditions are used. On the contrary, a transcrystalline interphase is formed near the carbon fiber surface in systems that have been subjected to isothermal treatments. By comparison with previous results concerning the mechanical properties of the fiber–matrix interface, it appears that the interfacial shear strength decreases in the presence of a transcrystalline interphase or when the crystallization rate of PEEK increases. Moreover, it seems that the “constraint state” of the amorphous phase of PEEK near the fiber surface could also play a role in the interfacial shear strength. Secondly, a method is proposed in order to estimate the elastic modulus of crystalline interphases. It seems that this modulus is strongly dependent on the crystallization rate of the polymer. Finally, the determination of the stress-free temperature, defined as the temperature at which a longitudinal compressive stress just appears on the carbon fiber during the processing of the composites, is performed by recording the acoustic events corresponding to the fragmentation process in single-fiber composites. The results confirm that the crystallization rate and the “constraint state” of the amorphous phase of the matrix play an important role in the mechanical behavior of carbon fiber–PEEK interfaces.  相似文献   

9.
Peculiarities of the state of the surface layer of the amorphous glassy polymer polystyrene are studied with a specially developed experimental approach. The essence of the method consists in the observation via atomic force microscope for the depth and rate of embedding of gold nanoparticles in a polymer after their preliminary adsorption on the polymer surface from hydrosol. It is shown that the polymer glass-transition temperature near the boundary with air is substantially lowered relative to its bulk value. “Equilibrium” thickness of the non-glassy (“melted”) surface layer is determined through analysis of the data on the kinetics of nanoparticle embedding, and it is revealed that the layer thickness increases with temperature, reaching, near the “bulk” glass-transition temperature, the magnitude that is close to the diameter of the macromolecular coil. The results obtained are analyzed with allowance for published data, and the semi-empirical formula describing variations in the thickness of the non-glassy surface layer as a function of temperature in the interval between the “surface” and “bulk” glass-transition temperatures of a polymer is proposed.  相似文献   

10.
A reaction rate model of fracture in polymer fibers is described. This model assumes that bond rupture is governed by absolute reaction rate theory with a stress-aided activation energy. It is demonstrated that the key in obtaining good agreement between the model and experiment lies in taking proper account of the variation of stress on the tie-chain molecules. The more taut chains rupture first, and the load is redistributed among the remaining unruptured tie chains. The effect of varying the temperature both in the model and in experiments on fracture in fibers is explored. Good agreement between predictions of the model and experiment is possible only with an undeterstanding of the distribution in stress on the tie chains. The distribution in stress on the chains was experimentally determined by monitoring the kinetics of bond rupture with electron paramagnetic resonance (EPR) spectroscopy. Temperature is found to have two effects on macroscopic strength. (1) The thermal energy aids the atomic stress in breaking the atomic bonds; as a consequence the rate of bond rupture of a family of bonds under a given molecular stress is increased. In this respect temperature might be viewed as decreasing the “strength” of a bond. (2) Temperature also serves to “loosen” the molecular structure and in this way modify the distribution in stress on the tie chains. To explain bond rupture and macroscopic fracture behavior quantitatively, account must be taken of both effects.  相似文献   

11.
The exact solution of the problem of adsorption of a long ideal polymer chain with variable degree of stiffness on a plane surface is presented. It is shown that the adsorption of stiff polymer chains is a second-order phase transition; in the adsorbed state “train” (i.e. adsorbed) sections are relatively longer and loop sections relatively shorter than for flexible chains. This effect is very pronounced: already for moderately stiff chains the number of Kuhn segment lengths in one “train” section at the temperature T = Tcr/2 (Tcr is the critical temperature for adsorption transition) can reach several thousands, and deviation from the surface occurs only in the form of small “hairpins”. The maximum length of the chain, which at the given conditions would flatten completely on the surface, is estimated.  相似文献   

12.
13.
The polyethersulfone (PES)-zeolite 3A, 4A and 5A mixed matrix membranes (MMMs) were fabricated with a modified solution-casting procedure at high temperatures close to the glass transition temperatures (Tg) of polymer materials. The effects of membrane preparation methodology, zeolite loading and pore size of zeolite on the gas separation performance of these mixed matrix membranes were studied. SEM results show the interface between polymer and zeolite in MMMs experiencing natural cooling is better (i.e., less defective) than that in MMMs experiencing immediate quenching. The increment of glass transition temperature (Tg) of MMMs with zeolite loading confirms the polymer chain rigidification induced by zeolite. The experimental results indicate that a higher zeolite loading results in a decrease in gas permeability and an increase in gas pair selectivity. The unmodified Maxwell model fails to correctly predict the permeability decrease induced by polymer chain rigidification near the zeolite surface and the partial pore blockage of zeolites by the polymer chains. A new modified Maxwell model is therefore proposed. It takes the combined effects of chain rigidification and partial pore blockage of zeolites into calculation. The new model shows much consistent permeability and selectivity predication with experimental data. Surprisingly, an increase in zeolite pore size from 3 to 5 Å generally not only increase gas permeability, but also gas pair selectivity. The O2/N2 selectivity of PES-zeolite 3A and PES-zeolite 4A membranes is very similar, while the O2/N2 selectivity of PES-zeolite 5A membranes is much higher. This implies the blockage may narrow a part of zeolite 5A pores to approximately 4 Å, which can discriminate the gas pair of O2 and N2, and narrow a part of zeolites 3A and 4A pores to smaller sizes. It is concluded that the partial pore blockage of zeolites by the polymer chains has equivalent or more influence on the separation properties of mixed matrix membranes compared with that of the polymer chain rigidification.  相似文献   

14.
Thermally Activated fragmentation of copolycarbonates PC(TxA1-x) of bisphenol A (unit CA) and the Heat-sensitive diol 1,1,2,2-tetraethyl-1,2-di-(p-hydroxy) phenylethane (unit CT) was studied in the bulk, i.e., in the pure copolymers and in their blends with the polycarbonates of bisphenol A (PCA) or tetramethyl bisphenol A (TMPC). Fragmentation proceeds via dissociation followed by disproportionation at the central C? C bond of the unit CT. The reaction has rates that are convenient to study near the glass transition temperature. The “chemical” time constants τ for the entire reaction and τ2 for the disproportionation step compete with the “physical” time constants δα for segmental motion and δq for fragment diffusion. A cage effect is observed below τ2 = δα and effects of delayed matrix response below τ = δα and τ = δq. Owing to the two latter effects, parameters such as the glass transition temperature and the structure factor of concentration fluctuations do not respond primarily to the fragmentation, but rather to subsequent relaxation and diffusion processes in the polymer matrix.  相似文献   

15.
This review is about the reactive plasticizer. Plasticizers are small molecules with low molecular weight. These compounds typically have an esteric structure. The plasticizers reduce the glass transition temperature, and the viscosity of the polymer also enhances the flexibility and processability of polymer materials. The main problem of these additives is that, over time, they migrate from the polymeric matrix and exude to the surface of polymeric matrix. As a result, the physical and mechanical properties of the polymer are affected. Various strategies, such as increasing molecular weight of plasticizer, selection of oligomeric structure for plasticizer, and adding nanoparticles of minerals, have been investigated to reduce and eliminate migration. An approach that has recently been of great interest to researchers is the use of reactive plasticizers. In this approach, plasticizers covalently bond to the polymeric chains and prevent migration.  相似文献   

16.
17.
The glass transition is a genuine imprint of temperature-dependent structural relaxation dynamics of backbone chains in amorphous polymers, which can also reflect features of chemical transformations induced in macromolecular architectures. Optimization of thermophysical properties of polymer nanocomposites beyond the state of the art is contingent on strong interfacial bonding between nanofiller particles and host polymer matrix chains that accordingly modifies glass transition characteristics. Contemporary polymer nanocomposite configurations have demonstrated only marginal glass transition temperature shifts utilizing conventional polymer matrix and functionalized nanofiller combinations. We present nanofiller-contiguous polymer network with aromatic thermosetting copolyester nanocomposites in which carbon nanofillers covalently conjugate with cure advancing crosslinked backbone chains through functional end-groups of constituent precursor oligomers upon an in situ polymerization reaction. Via thoroughly transformed backbone chain configuration, the polymer nanocomposites demonstrate unprecedented glass transition peak broadening by about 100 °C along with significant temperature upshift of around 80 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1595–1603  相似文献   

18.
谢航  李娇娇  王小勇  伍斌  夏茹  陈鹏  钱家盛 《高分子学报》2021,(4):399-405,I0004
生物基尼龙(PA56)源于天然产物,具有优良的环保性能和广阔应用前景,有望替代传统的石油基尼龙材料.为了开发基于PA56的导热材料,利用分子动力学模拟研究方法探索了石墨烯/PA56复合材料界面热阻的影响因素.首先,利用实验测试商用PA56样品的玻璃化转变温度(Tg)和导热系数(Tc),验证了PA56模型的模拟参数.接着,通过设计和比较不同表面改性状态对石墨烯/PA56复合材料的界面热阻的影响规律,最后,为了降低界面改性的难度,设计了一种新型的二嵌段共聚物作为石墨烯/PA56复合体系的界面改性剂,研究了界面改性剂的结构对界面热阻的影响规律.研究结果对于实验研究制备生物基尼龙导热复合材料具有重要的参考价值.  相似文献   

19.
20.
Different interphases have been created with different film formers and coupling agents on glass and carbon single filaments embedded in thermoplastic and thermosetting matrices. Three micromechanical procedures (pull‐out test, fragmentation test and a version of microbond test in which crack propagation was continuously monitored by optical microscopy) were used to measure fiber/matrix interfacial bond strengh. The effect of interphase microstructure, transcrystallinity as well as matrix molecular weight on the measured bond strength, failure mode, and local properties of the interphase was examined. The possibilities of controlling bond strength between fiber surface and polymer matrix are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号