首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of comb‐type polycarbosilanes of the type [Si(CH3)(OR)CH2]n {where R = (CH2)mR′, R′ = ? O‐p‐biphenyl? X [X = H (m = 3, 6, 8, or 11) or CN (m = 11)], and R′ = (CF2)7CF3 (m = 4)} were prepared from poly(chloromethylsilylenemethylene) by reactions with the respective hydroxy‐terminated side chains in the presence of triethylamine. The product side‐chain polymers were typically greater than 90% substituted and, for R′ = ? O‐p‐biphenyl? X derivatives, they exhibited phase transitions between 27 and 150 °C involving both crystalline and liquid‐crystalline phases. The introduction of the polar p‐CN substituent to the biphenyl mesogen resulted in a substantial increase in both the isotropization temperature and the liquid‐crystalline phase range with respect to the corresponding unsubstituted biphenyl derivative. For R = (CH2)11? O‐biphenyl side chains, an analogous side‐chain liquid‐crystalline (SCLC) polysiloxane derivative of the type [Si(CH3)(O(CH2)11? O‐biphenyl)O]n was prepared by means of a catalytic dehydrogenation reaction. In contrast to the polycarbosilane bearing the same side chain, this polymer did not exhibit any liquid‐crystalline phases but melted directly from a crystalline phase to an isotropic liquid at 94 °C. Similar behavior was observed for the polycarbosilane with a fluorocarbon chain, for which a single transition from a crystalline phase to an isotropic liquid was observed at ?0.7 °C. The molecular structures of these polymers were characterized by means of gel permeation chromatography and high‐resolution NMR studies, and the crystalline and liquid‐crystalline phases of the SCLC polymers were identified by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 984–997, 2003  相似文献   

2.
Side chain type ionic liquid crystalline polymers having a 4-(1,3-dioxan-2-yl)pyridinium structure in their mesogenic side chain were synthesized. These polymers exhibited the smectic A phase. The molecular weights of these ionic liquid crystalline polymers are very high, e.g. for compound 7 - 2 M w = 486 000.  相似文献   

3.
《Liquid crystals》2013,40(10):1297-1303
A new series of liquid crystalline main chain copolyesters were prepared, having ferrocene in the mesogenic segment and a methyl phosphate group along with a methylene spacer. The even numbered methylene groups were varied from two to ten. Liquid crystalline behaviour was investigated on a hot stage optical polarized microscope. Thermal properties of the polymers were analysed by TGA and DSC, revealing that the polymers yield high char products, probably caused by the formation of phosphorus and iron oxides. The glass transition (T g) temperatures of the polymers were found to be fairly low, the result of the incorporation of bulky phosphorus and ferrocene moieties in the chain. The phase behaviour was analysed and correlated with the structure of the polymers. The liquid crystalline textures of the polymers became more transparent with increasing spacer length. Energy minimized structures for the polymer repeating units reveal that both the ferrocene and phosphorus moieties produce more molecular entanglement, thus reducing the T g and T m of the polymers.  相似文献   

4.
Abstract

Twinned dimeric mesogens having a rigid-flexible-rigid molecular structure have been shown to be appropriate models for some properties of regularly alternating (rigid-flexible)n main chain liquid crystalline polymers (lcps). A family of tetrameric monodisperse liquid crystalline model compounds chemically related to known main chain liquid crystalline polymers of the 4-alkoxyphenyl 4′-alkoxy-benzoate type has been synthesized. The tetramers are nematogenic. Alternations in thermodynamic parameters (ΔH, ΔS) for the N-I transition as a function of spacer chain length indicate conformational behaviour of the internal spacers dominates mesophase properties.  相似文献   

5.
Side chain liquid crystalline polymers offer unique advantages as a new class of organic materials with potential for nonlinear optical response. Synthesis of a number of cyanobiphenyl-based side chain polymers was carried out employing the concept of having the cyanobiphenyl species serve concomitantly as both the linear optical chromophore and the mesogenic moiety in the polymer. The thermal behavior of these polymers was studied by DSC, optical microscopy and X-ray diffraction. Thin polymeric films were spin coated and electric field poling measurements were carried out as a function of temperature. The second harmonic (SH) coefficients d33 and d31 were measured by Maker fringe analysis and compared with the values predicted by molecular statistical models. The results showed that one can gain in net polar ordering by starting with a liquid crystalline system. The enhancement in d33 when < P<2 > = 0,6 was found to be a factor of 2,3-3,3 over the isotropic case ( P<2 > = 0). The relaxation process was investigated. Both the presence of liquid crystal character in the material and the temperature at which the films were stored below Tg appeared important in determining the thermal stability of the SH coefficients.  相似文献   

6.
A series of new side-chain liquid crystalline polymers containing chenodiol residue derived from 24-[4′-hydroxybiphenyl-4-yl-4-(allyloxy)benzoyloxy]-3α,7α-di{n-[4′-(4-ethoxybenzoyloxy)biphenyl-4-yloxy]-n-oxoalkanoyloxy}-5β-cholane was designed and prepared. The chemical structures of the monomer and polymer were confirmed by Fourier transform infrared and 1H NMR spectra. The mesomorphic properties of monomer and polymer were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction. The side-chain liquid crystalline polymers revealed wide mesophase temperature range and high thermal stability, and they showed nematic liquid crystalline phase. The influence of flexible space group length on thermal properties and specific rotation was examined.  相似文献   

7.
Polymerization of five monomers, 1-[p-(trans-4′-alkylcyclohexyl)phenoxy]alkyne (i.e., PCH001A, where PCH, 0, 01 and A represent phenylcyclohexyl mesogenic moiety, number of carbon in an alkyl group attached to cyclohexyl group, ether linkage + number of methylenic units in the spacer between phenoxy and acetylenic groups, and terminal acetylene, respectively) were carried out using Ziegler-Natta and metathesis catalysts. All polymers were soluble in organic solvents such as benzene, chloroform, and THF. A liquid crystalline phase was observed in the polymers of PCH303A and PCH503A through the polarized optical microscope and DSC measurements. Polymerization of PCH003A by the Fe(acac)3-AlEt3 catalyst yielded a high-molecular-weight polymer with Mw = ca. 3 × 106. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
ABSTRACT

Twenty novel azobenzene liquid crystal micromolecular compounds named ω-[4-(p-substituted azobenzeneoxy carbonyl]acid (X-ABCnA) have been designed and synthesised, followed by studies on the thermal performance and mesomorphic properties of the compounds. The liquid crystal compounds were divided into five homologous series based on the terminal substituents R (R = CH3O, CH3, H, Cl, NO2). In each series, the number of carbons on flexible chain was 4, 6, 8 and 10, respectively. Fourier-transform infrared, proton nuclear magnetic resonance and elementary analysis demonstrated that the structure of the synthesised azobenzene liquid crystal compounds was consistent with the molecular design. The mesomorphic properties were tested, analysed and characterised by using differential scanning calorimetry and polarised optical microscopy. The melting transition (T m) of all the compounds in homologous series with different substituents appeared to decrease with the increase of carbon numbers on flexible chains. The same held true for the temperature of isotropic-mesophase/crystalline transition. The compounds with stronger polarity of terminal substituents were more likely to form broader mesogenic ranges. The liquid crystal compounds discussed in this work can be regarded as a reference for the synthesis of mesogenic arms participating in the synthesis of novel multi-arm liquid crystalline macromolecules and polymers.  相似文献   

9.
Polymerization of liquid crystalline bifunctional monomer N‐{{ω‐{4‐[4‐(11‐acryloyloxy)undecanoxybenzoyl]biphenyleneoxy} alkyl}}‐3,4‐dimethylpyrrole gave a side‐chain liquid crystalline polyacrylate containing 3,4‐dimethylpyrrole group. Liquid crystallinity was determined by DSC and optical polarizing microscope measurements. The monomers having pentylene, hexylene, and decylene as the alkylene spacer group between the mesogenic unit and the 3,4‐dimethylpyrrole group exhibited smectic and nematic phases on the heating and cooling stages. The radically polymerized polyacrylate derivatives containing the 3,4‐dimethylpyrrole group showed nematic phases on the heating and cooling stages. These polymers are the first example of side‐chain liquid crystalline polymers containing 3,4‐dimethylpyrrole as functional group for further reaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1214–1221, 2000  相似文献   

10.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

11.
1‐Alkynes containing azobenzene mesogenic moieties [HC?C(CH2)9? O? ph? N?N? ph? O? R; R = ethyl ( 1 ), octyl ( 2 ), decyl ( 3 ), (S)‐2‐methylbutyl ( 4 ), or (S)‐1‐ethoxy‐1‐oxopropan‐2‐yl ( 5 ); ph = 1,4‐phenyl] were synthesized and polymerized in the presence of a Rh catalyst {(nbd)Rh+[B(C6H5)4]?; nbd = 2,5‐norbornadiene} to yield a series of liquid‐crystalline polymers in high yields (e.g., >75%). These polymers had moderate molecular weights (number‐average molecular weight ≥ 12,000), high cis contents in the main chain (up to 83%), good thermal stability, and good solubility in common organic solvents, such as tetrahydrofuran, chloroform, and dichloromethane. These polymers were thoroughly characterized by a combination of infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, polarized optical microscopy, and two‐dimensional wide‐angle X‐ray diffraction techniques. The liquid‐crystalline behavior of these polymers was dependent on the tail group attached to the azobenzene structure. Poly‐ 1 , which had the shortest tail group, that is, an ethyl group, showed a smectic A mesophase, whereas poly‐ 2 , poly‐ 3 , and poly‐ 5 , which had longer or chiral tail groups, formed smectic C mesophases, and poly‐ 4 , which had another chiral group attached to the azobenzene structure, showed a chiral smectic C mesophase in both the heating and cooling processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4532–4545, 2006  相似文献   

12.
Guofeng Wang 《Liquid crystals》2013,40(9):1280-1289
The star-shaped POSS-graft-LCP with POSS as the core and liquid crystal polymer, poly{6-(4?-octyloxyphenyl-4″-benzoyl)hexyl acrylate}, as arms was prepared by atom transfer radical polymerisation technique using octa(3-chloropropyl) polyhedral oligomeric silsesquioxane [POSS-(CH2CH2CH2Cl)8] as initiator. For comparison, the linear liquid crystal polymer, poly{6-(4?-octyloxyphenyl-4″-benzoyl)hexyl acrylate} (LLCP), was obtained by conventional radical polymerisation. Both liquid crystal polymers were characterised by FT-IR, 1H NMR, 13C NMR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, polarised optical microscopy and X-ray diffraction analysis. The liquid crystal phase behaviour research demonstrated that both liquid crystal polymers were reversible thermotropic nematic liquid crystal materials. The number of polymerisation degree of every arm attached on POSS in POSS-graft-LCP impacted greatly on the liquid crystal properties and only a small one was necessary for it to exhibit a broad liquid crystal range. Results further demonstrated that the special star-shaped topology of POSS and the eight arms attached helped POSS-graft-LCP form and stabilise liquid crystal phase easily. This research may further expand the way to star-shaped LCPs by employing a variety of (meth)acrylate and other vinyl liquid crystalline monomers.  相似文献   

13.
Liquid‐crystalline, monosubstituted polyacetylenes containing lateral pendants of bis(4‐alkoxyphenyl)terephthalate with no flexible spacers and alkoxy tails {RO, where R is CH3 [P(1)] or C6H13 [P(6)]} were synthesized, and the effects of the backbone structure and alkoxy tails on the properties of the polymers were investigated. The polymerizations of acetylene monomers were carried out with chloronorbornadiene rhodium(I) dimer as a 1,2‐insertion catalyst in toluene. The structures and properties of the monosubstituted polyacetylenes were characterized and evaluated with nuclear magnetic resonance, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, polarized optical microscopy, ultraviolet spectroscopy, and photoluminescence analyses. The molecular weights of the polymers were measured by gel permeation chromatography. The polymer with long tails (p‐hexyloxy), that is, P(6), formed a smectic mesophase upon heating above the melting temperature, but the other one with short tails (p‐methoxy), that is, P(1), could not exhibit liquid crystallinity at elevated temperatures. The steric effect of bulky, liquid‐crystalline mesogens and a direct connection with the main chain prevented the planar conformation of the polyene backbone and, therefore, led to the lower absorption and emission wavelength of the polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2499–2509, 2006  相似文献   

14.
Three sets of novel side-chain liquid crystalline polymers with monosubstituted azobenzene moieties in the side-chain have been studied. These are poly(p-(4′-methoxy-4-oxyhexyloxy azobenzene) benzyl methacrylate) (PPHABM), poly(m-(4′-methoxy-4-oxyhexyloxy azobenzene) benzyl methacrylate) (PMHABM) and poly(o-(4′-methoxy-4-oxyhexyloxy azobenzene) benzyl methacrylate) (POHABM). The chemical structure of the monomers was confirmed by 1H NMR, 13C NMR spectroscopy and elemental analysis. The structural characterisation of the polymers was performed by 1H NMR spectroscopy and gel permeation chromatography, and their phase behaviour and liquid crystalline properties were studied using differential scanning calorimetry, polarised optical microscopy and wide-angle X-ray diffraction. The results show that the transitional behaviour of side-chain liquid crystalline polymers containing monosubstituted azobenzene moieties depends strongly on the position of the substituent on the azobenzene moiety; for example, the ortho-monosubstituted polymers do not form liquid crystalline phases, but all the para- and meta-monosubstituted polymers exhibit a smectic A phase. Furthermore, the glass transition temperature (Tg ) of the polymers decreases in the order, para > meta > ortho. For the PPHABM and PMHABM polymers the isotropic temperature (Ti ) and liquid crystalline range (ΔT, from Tg to Ti ) are found to be in the order, para > meta, although it is surprising that the associated enthalpy changes in these polymers is the opposite order, meta > para.  相似文献   

15.
A new class of linear unsaturated polyphosphate esters based on divanillylidene cyclohexanone possessing liquid crystalline‐cum‐photocrosslinkable properties have been synthesized from 2,6‐bis[n‐hydroxyalkyloxy(vanillylidene)]cyclohexanone [n = 6,8,10] with various alkyl/aryl phosphorodichloridates in chloroform at ambient temperature. The resultant polymers were characterized by intrinsic viscosity, FT‐IR, 1H, 13C, and 31P‐NMR spectroscopy. All the polymers showed anisotropic behavior under hot stage optical polarized microscope (HOPM). The liquid crystalline textures of the polymers became more transparent with increasing spacer length. The thermal behavior of the polymers was studied by thermogravimetric analysis and differential scanning calorimetry. The Tg, Tm, and Ti of the polymers decreased with increasing flexible methylene chain. The photocrosslinking property of the polymer was investigated by UV light/UV spectroscopy; the crosslinking proceeds via 2π‐2π cycloaddition reactions of the divanillylidene exocyclic double bond of the polymer backbone. The pendant alkyloxy containing polymers show faster crosslinking than the pendant phenyloxy containing polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5215–5226, 2004  相似文献   

16.
New mesogenic homologous series bearing 1,3,4-oxadiazole ring with a nitro terminal group, 4-(5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)phenyl 4-((4-methoxybenzylidene)amino)benzoate (G1–G11), were synthesised. Their chemical structures are identified by fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR) and elemental analysis. The liquid crystalline properties of the series Gn and their precursory Fn were screened by differential scanning calorimetry and optical polarising microscopy (OPM). The compounds of the series Gn were screened by thermogravimetric analysis to observe their thermal stability. The target compounds (Gn) in this study, were displayed different liquid crystalline mesophase, the first two homologous (G1 and G2) did not show any liquid crystalline behaviour, the homologous (G3–G10) which have an alkoxy terminal group (n = 3–10) exhibited nematic phase, whilst the last derivative of the series (G11), n = 12, displayed SmA phase. The mesomorphic properties of these derivatives were affected by the presence of the nitro group at the end of the molecules which was classified as a strong polar group. Also, the role of alkoxy terminal chain and the bent heterocyclic ring (1,3,4-oxadiazole) in the liquid crystalline properties of these molecules were debated.  相似文献   

17.
In order to study the influence of the concentration of a flexible group on the liquid crystal behaviour of copper-containing complexes, series of Cu-coordinated, beta-diketone-based liquid crystalline polysilsesquioxanes (abbr. H-DK-Cu) and random copolymethylsilsesquioxanes (abbr. Me-DK-Cu), have been synthesized by the hydrosilylation reaction of a vinyl-terminated beta-diketone and 1-heptene with the polyhydrosilsesquioxane (H-T) and with the random copolymethylhydrosilsesquioxane (Me-T), followed by reaction with Cu(NH3)4Cl2. Their mesomorphic properties were investigated by differential scanning calorimetry and optical polarizing microscopy. The H-DK-Cu and Me-DK-Cu complexes with M w of approximately 1 x 104 are thermotropic liquid crystalline polymers and their clearing temperature and mesophase ranges are lower than those of the corresponding Cu-coordinated, beta-diketone-based liquid crystalline polymethylsilsesquioxanes (Cu-FBDKLCP) without the n-heptyl flexible group. However, their liquidity within the temperature range of the liquid crystal state is better. The results are mainly attributed to the heptyl, flexible side group.  相似文献   

18.
A series of main chain liquid crystalline ionomers containing sulphonate groups pendent to the polymer backbone were synthesized by an interfacial condensation reaction of 4,4′‐bis(1,10‐sebacyloxo)benzoic acid, brilliant yellow (BY), and 4,4′‐biphenyldiol. 4,4′‐Bis(1,10‐sebacyloxo)benzoic acid exhibited nematic schlieren texture during heating and cooling. The ionomers are thermotropic liquid crystalline polymers and thermally stable to about 270°C. They exhibit broad mesophase regions over a range of 220°C and the same nematic mesomogen with a colourful thread texture as B0‐LCP, which implies that the introduction of an ionic group did not change the texture of the B0‐LCP. However, the thermotropic liquid crystalline properties were somewhat weakened when the concentration of BY was more than 5%. The inherent viscosity in N,N‐dimethylformamide solution suggested that intermolecular associations of sulphonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration.  相似文献   

19.
A series of thermotropic liquid crystalline poly(ester-imide)s was synthesized by melt polymerization of diacetoxynaphthalene acid and n-(ω-carboxyalkylene) trimellitic imides. All polymers with 2,6 substituent positions (n-2,6 PEIM) on the napthalene ring exhibit liquid crystalline phases, whereas polymers with 2,7 substituent positions (n-2,7 PEIM) do not. This result suggests that the kink structure of n-2,7 PEIMS would hinder the formation of liquid crystalline polymer. The copoly(ester-imide)s with an irregular sequence of aliphatic units and aromatic mesogens showed the liquid crystallinity with the lower transition temperatures and a lesser tendency to crystallize than homopoly(ester-imide)s. The semicrystalline polymers with more regular monomeric sequence in the main chain showed the hysteresis of viscoelastic property in the temperature cycle. A nematic glassy copolymer gave the higher molecular orientation to the fiber than a semicrystalline polymer. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Perfectly alternating copolymers can be synthesised by reacting diacrylates with terminal dienes using alternating diene metathesis polycondensation (ALTMET). This novel method is very versatile and allows preparation of diverse structures of polymers, including main‐chain liquid crystalline polymers.

Main‐chain liquid crystalline polymer obtained by ALTMET.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号