首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mineral fillers have been used very often in the past for improving elastic modulus and temperature resistance of polyolefines, also to the detriment of impact resistance. Very recently it has been pointed out that good fracture toughness can be achieved if an appropriate mechanism is stimulated and a good bonding of the filler particles to the matrix is guarantied. This work shows some interesting results obtained in this field with HDPE (high density polyethylene) and kaolin. In particular the effect of filler content and of adhesion between matrix and filler is considered. A comparison is also made with literature data concerning filled polyolefines (HDPE and PP).  相似文献   

2.
The dimensions of reinforcing filler is a key factor in influencing the fracture and fatigue of rubbers. Here, the fracture and fatigue resistance of natural rubber (NR) filled with different dimensional carbon-based fillers including zero-dimensional spherical carbon black (CB), one-dimensional fibrous carbon nanotubes (CNTs) and two-dimensional planar graphene oxide (GO) were explored. To obtain equal hardness, a control indicator in the rubber industry, the amounts of CB, CNTs, and GO were 10.7 vol%, 1.2 vol%, and 1.6 vol%, respectively. J-integral and dynamic fatigue tests revealed that NR filled with CB exhibited the best quasi-static fracture resistance and dynamic crack growth resistance. The much higher hysteresis loss of NR filled with CNTs weakened its fatigue resistance. The planar GO played a limited role in preventing crack growth. Furthermore, digital image correlation revealed that NR filled with CB had the highest strain amplification level and area at the crack tip, which dissipated the most local input energy and then improved the fracture and fatigue performance.  相似文献   

3.
3-dimensional visualization of polymer morphology is of increasing interest in the polymer community because it provides a deeper insight into the arrangement of the phases in heterophasic polymeric materials, for example in composites. Depending on the size of the fillers, an adequate method offering a good compromise between suitable resolution and observable volume must be selected. Different polypropylene composites filled with long glass fibres, mica and talcum particles were investigated. Four methods were applied to account for the different filler sizes. For composites containing fillers larger than several micrometers, i.e. glass fibres and mica particles, X-ray tomography offers a very good combination of visibility and volume. Serial sectioning by polishing in combination with light optical microscopy can be an alternative if no X-ray equipment is available. This combined method has the disadvantage, however, that the imaged volume is smaller and involves more effort, which makes it unsuitable for routine observations. The much smaller talcum particles with thicknesses down to 200 nm were investigated by coupling focused ion beam (FIB) milling and scanning electron microscopy (SEM) and by insitu ultramicrotomy in the SEM. Both methods led to good and comparable results.  相似文献   

4.
GISPART (GIbraltar Strait PARticle Tracking model) is a three-dimensional particle-tracking code that simulates the dispersion of radionuclides in the Strait of Gibraltar. It consists of a hydrodynamic module that is run off-line to determine tidal constants and residuals in the domain. This information is stored in files that are read by the dispersion module to reconstruct water movements. A Lagrangian approach is used, thus, a radionuclide release is simulated by a number of particles, whose paths are computed individually. Radionuclide concentrations are obtained from the density of particles per water volume unit. Some examples of the results are shown. Matlab GUIs (graphical user interfaces) allow an easy application of the model and visualization of results.  相似文献   

5.
The number of chain scissions per unit area that occur during the fracture of partially annealed latex films from Mn ? 180,000 g/mol polystyrene particles of about 275 Å radius were measured and correlated to annealing times. A curve with four regimes was found. At short annealing times the curve is nearly flat, in what is called the chain pull-out regime. In the second regime, the number of chains broken per unit area increases with a 0.8 power of annealing time as entanglement of the diffusing polymer chains increases in neighboring host particles. This is in good agreement with Wool's theory which predicts a 0.75 power dependence. Then, after reaching a peak, the number of scissions decreases in the third regime, indicating a change in fracture mechanism. The number of chain scissions increases again in the fourth regime, as final healing of the film interface takes place. Fracture surface analysis reveals a rough surface for short annealing times and a smooth surface for longer annealing times. The number of polymer chain scissions per unit area of fracture surface showed no dependence on initial molecular weights for t ? τr where t and τr are annealing and relaxation times, respectively. The number of chain bridges crossing a unit area of interface was suggested as the basic molecular property. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
Summary Packed columns containing microparticles provide high column efficiency per unit time and strong retention characteristics compared with open tubular columns, and they are favored for fast separations. Nonporous particles eliminate the contribution of solute mass transfer resistance in the intraparticle void volume characteristic of porous particles, and they should be more suitable for fast separations. In this paper, the evaluation of nonporous silica particles of sizes ranging from 5 to 25 μm in packed capillary columns for fast supercritical fluid chromatography (SFC) using neat CO2 is reported. These particles were first deactivated using polymethyl-hydrosiloxanes and then encapsulated with a methylphenylpolysiloxane stationary phase. The retention factors, column efficiencies, column efficiencies per unit time, separation resolution, and separation resolution per unit time for fast SFC were determined for various length capillaries packed with various sizes of polymerencapsulated nonporous particles. It was found that 15 μm nonporous particles provided the highest column efficiency per unit time and resolution per unit time for fast packed capillary SFC. Under certain conditions, separations were completed in less than 1 min. Several thermally labile silylation reagent samples were separated in times less than 5 min. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

7.
To improve the mechanical and tribological performance, two kinds of wollastonite fillers (fine or coarse) and short carbon fibers (5–15 vol %) were, respectively, incorporated into an epoxy resin. Fine wollastonite fillers remarkably enhanced the flexural modulus, strength, and toughness of the resin at some filler contents (i.e., 10 vol %) simultaneously, while coarse wollastonite fillers and short carbon fibers impaired most of mechanical properties except the modulus. The small particle size, low aspect ratio as well as the good adhesion to the epoxy matrix of the fine wollastonite particles are believed to be responsible for the improved strength and toughness. Tribological tests were performed under sliding and low amplitude oscillating wear conditions. All fillers enhanced the wear resistance and reduced the sliding coefficient of friction but to a different extent. Under sliding wear conditions, fine wollastonite particle‐filled epoxy displayed the highest wear resistance because of the formation of an effective transfer film and the low abrasiveness of the fillers. Under low amplitude oscillating wear conditions, both wollastonite fillers showed much higher wear resistance than short carbon fibers regardless of the filler content. The better adhesion between the wollastonite fillers and the epoxy matrix is responsible for the higher wear resistance under oscillating conditions. The wear tracks were inspected by microscopy to analyze the corresponding wear mechanisms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 854–863, 2006  相似文献   

8.
Stepwise fatigue crack propagation in a range of polyethylene resins, some of which are candidates for use in pipes for natural gas distribution, was studied. Examination of the effect of molding conditions on fatigue crack propagation in a pipe resin indicated that fast cooling under pressure produced specimens with the same crack resistance as specimens taken from a pipe extruded from this resin. The mechanism of stepwise crack propagation in fatigue was the same as reported previously for creep loading. Observations of the region ahead of the arrested crack revealed a complex damage zone that consisted of a thick membrane at the crack tip followed by a main craze with subsidiary shear crazes that emerged from the crack tip at an angle to the main craze. The effects of molecular parameters, such as molecular weight, comonomer content, and branch distribution, on the kinetics of fatigue crack propagation were examined. Correlation of creep and fatigue crack resistance made it possible to relate fatigue fracture toughness to molecular parameters by invoking concepts of craze fibril stability developed for creep. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2355–2369, 1998  相似文献   

9.
In this paper, particles of calcium tungstate as a model compound were prepared by a reverse micelle??s method. The morphology of particles was tuned from rod to spindle-like and spherical by altering the temperature and concentration of reactants. A volume per single particle and a total number of particles were calculated to explain quantitatively the mechanism of influence of reaction conditions on the process. It was found that the reactant concentration had no effect on the number of particles. With increasing temperature or reaction time, the number of particles decreased, whereas the particle volume increased. The bulk water in the micelles seemed actually affect the size of particles.  相似文献   

10.
An attempt was made to study the effect of interfacial slippage on the filler reinforcement based on the boundary condition that the constituents of a particle-filled composite can slip relative to each other, but no cavities are formed at the interfaces. The elastic field satisfying these conditions is derived using the linear theory of elasticity and the effective elastic moduli of the composite are calculated. The following assumptions are made: (1) Filler particles are spherical, (2) fillers are completely dispersed, and (3) the volume fraction of fillers is sufficiently small that the interaction among fillers may be neglected. The expression for the shear modulus of the composite μ**, which is derived here, is consistent with the viscosity of a suspension which has been derived by Oldroyd. Experiments who that the increase of Young's modulus by glass beads (GB) is lower in polystyrene (PS) than in epoxy resin (Ep). The reinforcement in Ep-GB systems can be estimated by the well known formula derived assuming perfect adhesion. However, the reinforcement in PS-GB systems is in rather good agreement with the formula derived here assuming interfacial slippage.  相似文献   

11.
Scale-up of wet granulation in a vertical high shear mixer was conducted. Pharmaceutical excipient mixtures composed of lactose, cornstarch and micro-crystalline cellulose, and hydroxypropylecellulose as a binder were mixed together and then granulated with purified water under various operating conditions and vessel scales. Torque of agitator shaft was continuously measured and then agitation power per unit vessel volume was calculated. The agitation power per unit vessel volume showed a good correlation with physical properties of obtained granules, such as mass median diameter, strength and compressibility. This implied that the scale-up characteristics could be well analyzed by means of the agitation power per unit vessel volume. In addition, the effects of agitator tip speed and Froude number on the agitation power per unit vessel volume were investigated. The results showed that the agitation power per unit vessel volume was well characterized by the tip speed rather than the Froude number. This meant that the granule growth mainly progressed by the shear stress from the agitator blade. Dynamic characteristics of high shear granulation were also discussed here.  相似文献   

12.
The fracture behavior of a core-shell rubber (CSR) modified cross-linkable epoxy thermoplastic (CET) system, which exhibits high rigidity, highT g, and low crosslink density characteristics, is examined. The toughening mechanisms in this modified CET system are found to be cavitation of the CSR particles, followed by formation of extended shear banding around the advancing crack. With an addition of only 5 wt.% CSR, the modified CET possesses a greater than five-fold increase in fracture toughness (G IC) as well as greatly improved fatigue crack propagation resistance properties, with respect to those of the neat resin equivalents. The fracture mechanisms observed under static loading and under fatigue cyclic loading are compared and discussed.  相似文献   

13.
The goal of this paper is to relate the fatigue lifetime to the energy dissipation and the crack population for a Natural Rubber (NR) compound filled with carbon black. First, the dissipated energy is measured by thermal measurements and its evolution with the local strain is described. Then, the crack population under fatigue loading is investigated thanks to interrupted fatigue tests and SEM measurements. The dependency of the evolution of the crack surface density on the local strain and number of cycles is described. Finally, a fatigue criterion is suggested, starting from the basic assumption of accumulation of dissipated energy along the fatigue cycles. Combining the evolution of the dissipated energy and the crack surface density, the energetic criterion can be written as a simple expression using a single parameter. The predictions obtained with the identified criterion are compared with the results from classic fatigue tests and very close agreement is found.  相似文献   

14.
本文研究了填料对氯化丁基橡胶在玻璃化转变温度以上的温度范围里的力学阻尼行为的影响。在T_g-36℃的范围里,通过测定填料表面吸附的结合橡胶和填料的表面积,用填料-橡胶界面积函数和单位重量橡胶在填料表面占据的表面积等参数,研究了填料-橡胶相互作用对氯化丁基橡胶的力学阻尼行为的影响;用界面积函数和填充胶中填料的体积份数之积研究填料-填料相互摩擦对它的力学阻尼行为的影响。发现在填料浓度低时,氯化丁基橡胶的力学阻尼行为主要受填料-橡胶相互作用的影响,高浓度时,填料-填料相互摩擦显著地改善了它的力学阻尼行为。  相似文献   

15.
Abstract

Photochromic polymeric materials have been commercialized in ophthalmic lenses, however, there are many other potential uses for this technology. The photochromic transitions are extremely sensitive to environmental conditions, thus offering the potential for modifying the kinetics to suit different applications. There are a significant number of photochromic molecular families, with different characteristics. The spiro-compounds, both spirooxazines and spiropyrans, have received the most attention as they have good coloration properties and spirooxazines also display good fatigue resistance. Consequently this review focuses on the inclusion of these compounds into polymer matrices. In addition we discuss decoloration and coloration behaviors, solvatochromism, mechanism of fatigue, and unusual synthetic approaches.  相似文献   

16.
It is known that the electrical volume resistivity of insulating polymers filled with conductive fillers suddenly decreases at a certain content of filler. This phenomenon is called percolation. Therefore, it is known that controlling resistivity in the semi-conductive region for carbon black (CB) filled composites is very difficult. When poly (ethylene-co-vinyl acetate) (EVA) is used as a matrix, the percolation curve becomes gradual because CB particles disperse well in EVA. In this study, the relationship between the dispersion state of CB particles and electrical resistivity for EVA/poly (L-lactic acid) (PLLA) filled with CB composite was investigated. The apparent phase separation was seen in the SEM photograph. It was predicted that the CB particles located into the EVA phase in the light of thermodynamical consideration, which was estimated from the wetting coefficient between polymer matrix and CB particles. The total surface area per unit mass of dispersed CB particles in the polymer blend matrix was estimated from small-angle X-ray scattering and the volume resistivity decreased with increasing CB content. The values of the surface area of CB particles in CB filled EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) polymer blends showed a value similar to that of the CB filled EVA single polymer matrix. In electrical volume resistivity measurement, moreover, the slopes of percolation curves of EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) filled with CB composite are similar to that of EVA single polymer filled with CB composite. As a result, it was found that CB particles selectively locate in the EVA phase, and then the particle forms conductive networks similar to the networks in the case of EVA single polymer used as a matrix.  相似文献   

17.

Electrically conductive composite systems based on polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) filled with metal powders of Al and Cu have been studied. The composite preparation conditions allow the formation of a random distribution of metallic particles in the polymer matrix. Dependence of the dielectric and conductivity properties of the PVC and PMMA/fillers was studied over a broad range of frequency and volume fraction of metal fillers. The experimental results could be explained by means of the conductivity of fillers and the interface polarization between polymers and fillers. Percolation was also seen in this study when the volume fraction of conducting fillers was close to critical value, in which the composites undergo an insulator‐conductor transition. The relation among the dielectric property and the fillers with different conductivity was proposed.  相似文献   

18.
CaCO3/PEEK复合体系的力学行为和热行为研究   总被引:7,自引:0,他引:7  
以聚醚醚酮和碳酸钙复合体系为研究对象,考察了偶联剂和填料添加量对复合材料力学行为和热行为的影响.发现磺化聚醚醚酮作为偶联剂能有效地改善材料的力学性能,提高基体树脂的玻璃化转变温度,降低基体树脂的熔点,有助于改善聚醚醚酮的加工条件  相似文献   

19.
A method is described for roughening the surface of glass capillary columns for subsequent coating with polar stationary phases. A suspension of sodium chloride, obtained by addition of a saturated solution of sodium chloride in methanol to 1,1,1-trichloroethane, is passed through the column at velocities of 1–5 cm/s. During passage of the suspension, particles of sodium chloride deposit spontaneously on the column wall. The amount of sodium chloride deposited on the column wall is a function of the volume of the suspension passed through and of the contact time of the suspension and the column wall. Ultimately the amount of sodium chloride per unit surface area approaches a maximum. Columns covered with this maximum amount of sodium chloride were prepared with high reproducibility and coated with a number of polar stationary phases. Various factors that influence the stability of the suspension and the deposition of sodium chloride are discussed and minimum requirements are given. A theoretical model is proposed for the mechanism of deposition of sodium chloride particles on the glass wall.  相似文献   

20.
The effects of particle size and morphology on the mechanical behavior of pressure consolidated, saturated, alumina powder bodies, were determined with uniaxial compression experiments of cylindrical specimens at a fixed displacement rate. Five different α-Al2O3 powders, from the same manufacturer, were used. The slurries were dispersed at pH 4 and then either coagulated with additions of NH4Cl to produce weakly attractive particle networks with short-range repulsive potentials or flocculated at the isoelectric point (iep=pH 9). These slurries were consolidated by pressure filtration using pressures ranging from 2.5 to 150 MPa. Larger particles packed to higher relative densities when compared to smaller particles. Blocky particles packed at a lower relative density when compared to particles with roundish surfaces. Bodies were plastic when consolidated below a critical consolidation pressure; above this pressure, the body was brittle. Bodies formed with large particles were brittle at a lower consolidation pressure. The effect of particle size is discussed with respect to the number of particle–particle contacts per unit volume at a given relative density. Namely, for a given applied pressure, larger forces exist between larger particles because of the smaller number of contacts per unit volume relative to smaller particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号