首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a statistical mechanical theory for polymer–solvent systems based on integral equations derived from the polymer Kirkwood hierarchy. Integral equations for pair monomer–monomer, monomer–solvent, and solvent–solvent correlation functions yield polymer–solvent distribution, chain conformation in three dimensions, and scaling properties associated with polymer swell and collapse in athermal, good, and poor solvents. Variation of polymer properties with solvent density and solvent quality is evaluated for chains having up to 100 bonds. In good solvents, the scaling exponent v has a constant value of about 0.61 at different solvent densities computed. For the athermal solvent case, the gyration radius and scaling exponent decrease with solvent density. In a poor solvent, the chain size scales as Nv with the value of the exponent being about 0.3, compared with the mean field value of ⅓. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3025–3033, 1998  相似文献   

2.
Computer simulation studies on the miscibility behavior and single chain properties in binary polymer blends are reviewed. We consider blends of various architectures in order to identify important architectural parameters on a coarse grained level and study their qualitative consequences for the miscibility behavior. The phase diagram, the relation between the exchange chemical potential and the composition, and the intermolecular pair correlation functions for symmetric blends of linear chains, blends of cyclic polymers, blends with an asymmetry in cohesive energies, blends with different chain lengths, blends with distinct monomer shapes, and blends with a stiffness disparity between the components are discussed. For strictly symmetric blends the Flory‐Huggins theory becomes quantitatively correct in the long chain length limit, when the χ parameter is identified via the intermolecular pair correlation function. For small chain lengths composition fluctuations are important. They manifest themselves in 3D Ising behavior at the critical point and an upward parabolic curvature of the χ parameter from small‐angle neutron scattering close to the critical point. The ratio between the mean field estimate and the true critical temperature decreases like √χ/(ρb3) for long chain lengths. The chain conformations in the minority phase of a symmetric blend shrink as to reduce the number of energeticaly unfavorable interactions. Scaling arguments, detailed self‐consistent field calculations and Monte Carlo simulations of chains with up to 512 effective segments agree that the conformational changes decrease around the critical point like 1/√N. Other mechanisms for a composition dependence of the single chain conformations in asymmetric blends are discussed. If the constituents of the blends have non‐additive monomer shapes, one has a large positive chain‐length‐independent entropic contribution to the χ parameter. In this case the blend phase separates upon heating at a lower critical solution temperature. Upon increasing the chain length the critical temperature approaches a finite value from above. For blends with a stiffness disparity an entropic contribution of the χ parameter of the order 10–3 is measured with high accuracy. Also the enthalpic contribution increases, because a back folding of the stiffer component is suppressed and the stiffer chains possess more intermolecular contacts. Two aspects of the single chain dynamics in blends are discussed: (a) The dynamics of short non‐entangled chains in a binary blend are studied via dynamic Monte Carlo simulations. There is hardly any coupling between the chain dynamics and the thermodynamic state of the mixture. Above the critical temperatures both the translational diffusion and the relaxation of the chain conformations are independent of the temperature. (b) Irreversible reactions of a small fraction of reactive polymers at a strongly segregated interface in a symmetric binary polymer blend are investigated. End‐functionalized homopolymers of different species react at the interface instantaneously and irreversibly to form diblock copolymers. The initial reaction rate for small reactant concentrations is time dependent and larger than expected from theory. At later times there is a depletion of the reactive chains at the interface and the reaction is determined by the flux of the chains to the interface. Pertinent off‐lattice simulations and analytical theories are briefly discussed.  相似文献   

3.
A general matrix formula is proposed for the weight‐average molecular weights of the polymer systems formed through simultaneous scission, branching and crosslinking of N types of chains, assuming the chain connection statistics are Markovian. For the polymerization systems in which chains are generated consecutively, such as for free‐radical polymerization, the present theory can be applied by increasing the number of chain types N to infinity, by considering the chains formed at different times as different types of chains. The gel point determination reduces to the eigenvalue problem and the present theory extends the classical gelation theory to non‐random, history‐dependent reaction systems. From the mathematical point of view, this theory is capable of describing complex molecular build‐up processes through end‐linking, T‐ and H‐shaped chain connections, irrespective of reaction/reactor types used.

Schematic representation of the 0th generation segment and the connection to the 1st generation segments.  相似文献   


4.
The tube diameter in the reptation model is the distance between a given chain segment and its nearest segment in adjacent chains. This dimention is thus related to the cross-sectional area of polymer chains and the nearest approach among chains, without effects of thermal fluctuation and steric repulsion. Prior calculated tube diameters are much larger, about 5 times, than the actual chain cross-sectional areas. This is ascribed to the local freedom required for mutual rearrangement among neighboring chain segments. This tube diameter concept seems to us to infer a relationship to the corresponding entanglement spacing. Indeed, we report here that the critical molecular weight, Mc, for the onset of entanglements is found to be Mc = 28 A/(〈R20/M), where A is the chain cross-sectional area and 〈R20 the mean-square end-to-end distance of a freely jointed chain of molecular weight M. The new, computed relationship between the critical number of backbone atoms for entanglement and the chain cross-sectional area of polymers, Nc = A0,44, is concordant with the cross-sectional area of polymer chains being the parameter controlling the critical entanglement number of backbone atoms of flexible polymers.  相似文献   

5.
The method for analyzing the reshuffling of polymer segments developed previously has been extended to systems involving the disproportionation of chain functionalities. The effect of interchain exchange reactions of this type, leading to the redistribution of chain lengths and of the chain functionalities (redistribution of living and dead chain ends), was analyzed by means of the Monte Carlo simulations. In the systems, in which no propagation occurs (monomer concentration equal to zero), a set of polymer chains containing one living and one dead end was taken as an initial material. A series of simulations were performed for systems with differing molecular weight distributions of the starting macromolecules. Uniform (no chain length distribution polymer – all chains are of the same length), Poisson, and the most probable (geometric) distributions were taken into consideration. Although the molecular weight distributions (MWDs) of functionally different chains of the same polymer were different apart from the eventual equilibrium conditions, the overall MWD was very close to that observed in analogous systems without disproportionation. The same was observed concerning MWDs in modeled polymerization systems, in which reshuffling and disproportionation accompanied propagation. Consequently, a method of estimating the ratio of rate constants of propagation and reshuffling (i. e. kp /k tr) in the relevant polymerization systems, using the observed polydispersity indexes, was proposed. The extent of disproportionation can be evaluated from the determined relationships of the polydispersity index and of the monofunctional chains fraction as functions of the average number of chain transformations.  相似文献   

6.
Simple models of polymer chains were based on a simple cubic lattice. The model chains were star‐branched with f = 3 and f = 6 branches. The attractive potential between polymer segments was introduced to study the properties of polymer chains in the different temperature regimes. The computer simulations were carried out by means of the dynamic Monte Carlo method. It was found that contrary to recent real experiments, the ratio of the radius of gyration to the hydrodynamic radius did not exhibit a maximum near the coil‐globule transition but decreased monotonically with the temperature. The distribution of polymer‐polymer contacts and their lifetimes were also studied. It appeared that in homopolymer chains the lifetimes of these contacts were very short. At low temperatures contacts were distributed over the entire chain and at high temperatures only contacts that were close to the chain survived longer times.  相似文献   

7.
We discuss a phenomenological, coarse-grained simulation scheme, single-chain-in-mean-field (SCMF) simulation, for investigating the kinetics of phase separation in dense polymer blends and mixtures of polymers and solvents. In the spirit of self-consistent-field calculations, we approximate the interacting multichain problem by that of a single chain in an external field, which, in turn, depends on the local densities of the components. To study the time evolution of the mixture, we perform an explicit Monte Carlo (MC) simulation of an ensemble of independent chains in the external field and periodically calculate the average densities and update the external field. Unlike dynamic self-consistent-field theory, these SCMF simulations do not assume that the chain conformations relax much more quickly than the density and incorporate the single-chain dynamics explicitly rather than via an Onsager coefficient. This allows us to study systems with large spatial inhomogeneities and dynamic asymmetries. To assess the accuracy and limitations of the simulation scheme, we compare the results of SCMF simulations using a discretized Edwards Hamiltonian with computer simulations of the corresponding multichain system for (1) the early stages of spinodal decomposition of a symmetric binary polymer blend in response to a quench from χN = 0.314 to χN = 5 (where χ is the Flory–Huggins parameter and N is the number of segments), for which the growth rate of composition fluctuations is compared with MC simulations of the bond fluctuation model and alternative dynamic self-consistent-field calculations, and (2) the evaporation of a solvent from a low-molecular-weight thin polymer film, for which a comparison is made with molecular dynamics (MD) simulations of a bead-necklace model with a monomeric solvent. In the latter case, the polymer conformations are extracted from MD simulations and modeled in the SCMF simulations by a discretized Edwards Hamiltonian augmented by a chain-bending potential. From the MD simulations of thin polymer films in equilibrium with its vapor, phase coexistence has been determined, and the second- and third-order virial coefficients in the SCMF simulations have been adjusted accordingly. Finally, MD simulations of bulk solutions of a polymer and a solvent over a range of compositions, as well as the pure solvent at various densities, have been performed to determine self-diffusion coefficients that enter the SCMF simulations in the form of density-dependent segmental mobilities. A comparison of the polymer and solvent profiles in a thin film as a function of time and the fraction of the solvent evaporating from a solvent-swollen film, as obtained from MD simulations and parameterized SCMF simulations, shows satisfactory agreement for this simple mapping procedure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 934–958, 2005  相似文献   

8.
We have analyzed chain conformations and the existence — or otherwise — of chain overlaps and entanglements in dilute polymer solutions (at concentrations c < C*, c* = critical concentration). The fundamental problem of existence of chain overlaps in dilute solutions is also related to the drag reduction phenomenon (DR). Some experimental results pertinent to DR are explained in terms of entanglements even for solutions at concentrations defined in ppm. We report results of Brownian dynamics simulations of polymer solutions in which the equations of motion of the chains are solved by using the Langevin equation. Chains move according to actions of a systematic frictional force and a randomly fluctuating force w(t), where t is time. In addition, a shear flow field can be introduced into the model. To evaluate the structure of polymer chains in solution we have devised a measure of interchain contacts and two different measures of entanglements. The results for c = 0.3 c* demonstrate that both chain entanglements and overlaps take place even in dilute solution. They also confirm predictions from an earlier combinatorial model.  相似文献   

9.
A bead-spring off-lattice model of a polymer chain with repulsive interactions among repeating units confined into straight tubes of various cross sections, DT2, is studied by Monte Carlo simulation. We are also varying the chain length from N = 16 to 128 and the strength of a short-range attractive interaction between the repeating units and the walls of the tube. Longitudinal and perpendicular static linear dimensions of the chains are analyzed, as well as the density profile of repeating units across the tube. These data are interpreted in terms of scaling concepts describing the crossover between three-dimensional and quasi-one-dimensional chain conformations and the adsorption transition of chains at flat infinite walls, respectively. We also study the time-dependent mean-square displacements of repeating units and obtain various relaxation times. It is shown that both relaxation times scaling proportional to N2 and to N3 play a role in the reptative motion of the chain in the tubes.  相似文献   

10.
Monte Carlo simulations of simple models of star-branched polymers were carried out. The model chains were confined to simple cubic lattice and consisted of f = 3 branches of equal length and the total number of polymer segments as well as the density of grafted chains on the surface were varied. The chains have had one arm end attached to an impenetrable plate. The simulations were performed by employing the set of local micromodifications of the chain conformations. The model chains were athermal, i.e. good solvent conditions were modeled, the excluded volume effect was present at the model. The density of grafted chains on the surface was varied from a single chain up to 0.3. The static and dynamic properties of the system were studied. The influence of polymer concentration as well as the polymer length on static and dynamic properties of the system studied was shown. The relation between the structure and short-time dynamics (relaxation times) was discussed.  相似文献   

11.
An analytical theory of block copolymer conformations is developed for systematically studying the effects of the chain length, chain architecture, and segment interactions. The main results obtained for AB diblock and ABA triblock chains are as follows: (i) In the absence of AA and BB interactions, both diblock and triblock chains collapse to a dense form if the AB interaction is attractive. In the collapsed coil form, the mean-square end-to-end distance 〈R2〉 is proportional to the square root of the number of segments n1/2. (ii) The diblock chain has a dumbbell form if AA and BB interactions are attractive and AB interaction repulsive, but the triblock chain collapses. In the dumbbell form, 〈R2〉 is proportional to n.  相似文献   

12.
Conformations of chains in swollen middle layers of onion‐skin micelles were studied by Monte Carlo simulations on a tetrahedral lattice under conditions that mimic real systems of swollen onion‐skin micelles. Polymer blocks are modeled as tethered self‐avoiding chains, enclosed in a narrow spherical layer. Average density of segments, 〈gS〉 ca. 0.6, corresponds to swollen micellar systems. Only the excluded volume effect was taken into account since it plays the most important role in dense polymer systems. Individual chains are described by equivalent ellipsoids of gyration. Distributions of the ellipsoid half‐axes were calculated during simulations. Results based on a large series of simulations indicate that the middle layer‐forming blocks may be described as prolonged ellipsoids oriented preferentially perpendicular to the radial direction. Analysis of the data concerning the orientations of end‐to‐end vectors and distributions of segments within one chain indicates that individual chains are strongly interpenetrated and the multi‐chain system is fairly disordered.  相似文献   

13.
A dynamic Monte Carlo simulation of the collapse transition of polymer chains is presented. The chains are represented as self-avoiding walks on the simple cubic lattice with a nearest-neighbor contact potential to model the effect of solvent quality. The knot state of the chains is determined using the knot group procedure presented in the accompanying paper. The equilibrium knot spectrum and the equilibrium rms radius of gyration as functions of the chain length and the contact potential are reported. The collapse transition was studied following quenches from good-to poor-solvent conditions. Our results confirm the prediction that the newly formed globule is not yet at equilibrium, since it has not yet achieved its equilibrium knot spectrum. For our model system, the relaxation of the knot spectrum is about an order of magnitude slower than that of the radius of gyration. The collapse transition is also studied for a model in which both ends of the chain remain in good-solvent conditions. Over the time scale of these simulations, knot formation is frustrated in this inhomogeneous model, verifying that the mechanism of knotting is the tunneling of chain ends in and out of the globule.  相似文献   

14.
The first algorithm for Brownian dynamics (BD) simulation of needle chains (the NC-algorithm) was developed recently by Nyland et al. (J. Chem. Phys. 1996;105:1198). Here we report on an implementation of the NC-algorithm using Nn rigid segments composed of Nbn spherical beads, and its efficiency relative to the Ermak–McCammon BD algorithm (J. Chem. Phys. 1978;69:1352) used to simulate bead-spring polymer chains consisting of Nb beads arranged into Nn stiff segments each composed of Nbn beads. For segmented chains the NC-algorithm can use a dimensionless time-step that is about four orders of magnitude larger than that of the bead-spring BD algorithm. In addition, the computer time required to perform a single dimensionless time-step scales as Nb2 and Nb3 for the NC-algorithm and the bead-spring algorithms, respectively. This demonstrates that, for polymer chains consisting of needles or rigid segments with aspect ratios larger than three, the NC-algorithm is vastly more efficient than the Ermak–McCammon BD algorithm.  相似文献   

15.
We considered two model systems of star-branched polymers near an impenetrable surface. The model chains were constructed on a simple cubic lattice. Each star polymer consisted of f = 3 arms of equal length and the total number of segments was up to 799. The excluded volume effect was included into these models only and therefore the system was studied at good solvent conditions. In the first model system polymer chain was terminally attached with one arm to the surface. The grafted arm could slide along the surface. In the second system the star-branched chain was adsorbed on the surface and the strength of adsorption was were varied. The simulations were performed using the dynamic Monte Carlo method with local changes of chain conformations. The internal and local structures of a polymer layer were determined. The lateral diffusion and internal mobility of star-branched chains were studied as a function of strength of adsorption and the chain length. The lateral diffusion and internal mobility of star-branched chains were studied as a function of strength of adsorption and the chain length. It was shown that the behavior of grafted and weakly adsorbed chains was similar to that of a free three-dimensional polymer, while the strongly adsorbed chains behave as a two-dimensional system.  相似文献   

16.
When the two end groups of a linear polymer chain are absorbed on a solid surface, the polymer chain forms the “loop” conformation. Investigation has been made on the conformational statistics of a model loop chain by the normal random walk (NRW) on a lattice confined in the half-infinite space. Based on the conformational distribution function of the NRW model tail chain, it is easy to deduce an analytical formula expressing the conformational number of the model loop chain. It was found that the ratio of the conformational number of the model loop chain to that of the free chain varies with the power functionN -2/3 when the chain lengthN→οο. The same result -was obtained by means of the recursion equation. The ratio of the mean square end-to-end distanceh 2 for the model loop chain to its mean square bond lengthl 2 is 2N/3. Compared with the free chain with the same lengthN, the mean square end-to-end distance of the model loop chain contracts to a certain extent. The basic relationships deduced were supported by the exact enumeration and Monte Carlo simulations. Project supported by the National Natural Science Foundation of China.  相似文献   

17.
The deuterium NMR (2H-NMR) is used for probing the chain segment orientation in polymer networks under uniaxial stress. The method is based on the observation of an incomplete time averaging of quadrupolar interactions affixed to deuterated segments. The samples are end-linked polydimethylsiloxane networks. The 2H-NMR experiments are performed either on labelled network chains or an labelled probe polymer chains dissolved in the network. The basic results are the following: — The induced uniaxial order is related to a uniaxial dynamics of chain segments around the direction of the applied constraint. — A permanent orientation is observed on free polymer chains dissolved in the deformed networks. — The mean degrees of orientational order induced along short and long chains in bimodal networks are the same. These experimental facts appear as evidences for cooperative orientational couplings between chain segments in the deformed networks.  相似文献   

18.
The phase behavior of a single polyethylene chain confined between two adsorption walls is investigated by using molecular dynamics simulations. In the free space, it is confirmed in our calculation that the isolated polymer chain exhibits a disordered coil state at high temperatures, and collapses into a condensed state at low temperatures, that is, the coil‐to‐globule transition, and the finite chain length effects are considered since the critical region depends on chain lengths. When the chain is confined between two attractive walls, however, the equilibrium properties not only depend on the chain length but also depend on the adsorption energy and the confinement. Mainly, we focus on the influence of polymer chain length, confinement, and adsorption interaction on the equilibrium thermodynamic properties of the polyethylene chains. Chain lengths of N = 40, 80, and 120 beads, distances between the two walls of D = 10, 20, 30, 50, and 90 Å, and adsorption energies of w = 1.5, 2.5, 3.5, 6.5, and 8.5 kcal/mol are considered here. By considering the confinement–adsorption interactions, some new folding structures are found, that is, the hairpin structure for short chain of N = 40 beads, and the enhanced hairpin or crystal like structures for long chains of N = 80 and 120 beads. The results obtained in our simulations may provide some insights into the phase behaviors of confined polymers, which can not be obtained by previous studies without considering confinement–adsorption interactions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 370–387, 2008  相似文献   

19.
1H NMR spectroscopy has been applied to the analysis of dynamic-structural changes during temperature-induced phase transition of non-ionized poly(N-isopropylmethacrylamide) (PIPMAm) and ionized copolymers of N-isopropylmethacrylamide with sodium methacrylate, all in D2O solutions with various polymer concentrations (c = 0.1-10 wt.-%) and ionic comonomer mole fractions (i = 0-10 mole %). It was found that the formation of compact globular-like structures during the phase transition is independent of polymer concentration for non-ionized samples; the presence of negative charges on the polymer chains leads to a dependence of the phase transition temperature on c and i. Virtually all PIPMAm segments are in globular-like structures for low polymer concentrations; for c ⩾ 1 wt.-%, this holds only for low content i of the ionic comonomer. An increase in c and i leads to a decrease in the fraction of polymer segments in globular-like structures; for samples with highest values of c and i, the phase transition was not observed.  相似文献   

20.
A semi-empirical formula for orientational relaxation times of worm-like chains in dilute solutions is proposed where τrod = τ0N3 is the relaxation time of a rigid rod composed of N segments, and x = 2a/L is the chain rigidity, i.e. the ratio of the double persistence length to the chain contour length, L. The formula, which can be used in the entire range of molecular rigidities and chain lengths, has been tested against segment relaxation times for semi-rigid chains calculated from the optimized Rouse-Zimm model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号