首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The indides Eu2Pd2In and Eu2Pt2In were synthesized from the elements in sealed tantalum tubes in an induction furnace. The samples were characterized by powder X‐ray diffraction. The structures were refined on the basis of single‐crystal X‐ray diffractometer data: HT‐Pr2Co2Al type, C2/c, a = 1035.7(2), b = 592.9(1), c = 823.6(2) pm, β = 104.26(1) °, wR2 = 0.026, 1075 F2 values, 25 variables for Eu2Pd2In and a = 1017.2(2), b = 588.7(1), c = 826.5(1) pm, β = 103.76(1) °, wR2 = 0.062, 706 F2 values, 25 variables for Eu2Pt2In. The indium atoms have four platinum (palladium) neighbors in strongly distorted tetrahedral coordination at Pt–In and Pd–In distances ranging from 273 to 275 pm. These InPd4/2 and InPt4/2 units are condensed via common edges to infinite InPd2 and InPt2 chains, which are surrounded by the europium atoms. The chains form the motif of hexagonal rod packing.  相似文献   

2.
The Isotypic Compounds BaRh2Si2, BaIr2Si2, and BaPt2Ga2 – a Monoclinic Distortion Variant of the CaRh2B2 Structure The new compounds BaRh2Si2 (monoclinic, P21/c, a = 792.6(1) pm, b = 664.5(7) pm, c = 767.9(4) pm, β = 91.2(1)°, Z = 4, 2867 reflexions, 47 parameters, R = 0.024), BaIr2Si2 (monoclinic, P21/c, a = 792.47(6) pm, b = 664.28(6) pm, c = 772.22(6) pm, β = 92.181(7)°, Z = 4, 1939 reflexions, 47 parameters, R = 0.037) and BaPt2Ga2 (monoclinic, P21/c, a = 850.4(1) pm, b = 647.3(1) pm, c = 819.8(1) pm, β = 95.97(1)°, Z = 4, 1506 reflexions, 47 parameters, R = 0.038) were prepared by reaction of the elements. Their structures were determined from single crystal data. The compounds crystallize isotypically with a distortion variant of the CaRh2B2 type of structure.  相似文献   

3.
The autoionization widths of levels 1s 2s 2pjJ, 1s2s2 2S1/2, and 1s2pj2pjJ have been calculated for ions with Z = 6–30. The calculation has been carried out in intermediate coupling. The decay amplitudes have been calculated in a relativistic approximation.  相似文献   

4.
When Cl2NCF2CF2NCl2 is heated with CF2CFX (X = Cl, F) ClXCFCF2N(Cl)CF2CF2N(Cl)CF2CXClF (X = Cl, 2 ; F, 3 ) is formed. Mercury extracts chlorine fluoride from 2 and 3 to form new polyfluorobisazomethines, ClXCFCF2NCFCFNCF2CXClF (X = Cl, 4 ; F, 5 ). Photolysis of the product obtained from CCl2NCCl2CCl2NCCl2 with ClF, CF2ClN(Cl)CF ClCFClN(Cl)CF2Cl ( 6 ) gives another bisazomethine, CF2ClNCFCFNCF2Cl ( 7 ) with concomitant loss of Cl2. At 25°C, in the presence of CsF, 4 and 5 are cyclized to give (X = Cl, 8 ; F, 9 ), and 7 forms a bicyclic derivative at 100°C, ( 1 ). Addition of chlorine fluoride to 8 and to 1 produces ( 10 ) and ( 14 ), respectively. Photolysis of 10 results in the loss of CFCl3 to form ( 11 ), and 14 loses Cl2 and dimerizes to the hydrazine ( 15 ). The further addition of ClF to 11 gives rise to ( 12 ) which when photolyzed at 3000 Å forms a second cyclic hydrazine, ( 13 ).  相似文献   

5.
LaPt2Ge2 and EuPt2Ge2 – Revision of the Crystal Structures LaPt2Ge2 was rechecked by single crystal X‐ray methods resulting in space group P21/c (in place of P21) and the lattice constants a = 9.953(3), b = 4.439(1), c = 8.879Å, β = 90.62(4)°, and Z = 4. In contrast to previous reports the cell volume had to be doubled. The same is true for EuPt2Ge2 (a = 9.731(1), b = 4.446(1), c = 8.823(1) Å, β = 91.26(1)°). The crystal structures correspond to a monoclinic variant of the tetragonal CaBe2Ge2 type, whereas the distortion can be described as different rotations of the coordination polyhedra around the La and Eu atoms, respectively. It is most likely that the compounds APt2Ge2 with A = Ca, Y, La‐Dy undergo phase transitions at higher temperatures forming then the undistorted CaBe2Ge2 type, space group P4/nmm. This was confirmed for SmPt2Ge2 (a = 4.292(1), c = 9.980(1) Å; Z = 2) and might also be the case for APt2Ge2 with A = Ca, Nd, Sm, Eu, and Gd.  相似文献   

6.
Summary Reactions oftrans-[M(N2)2(dppe)2] (A;M=Mo, W;dppe=Ph 2PCH2CH2PPh 2) with ethyldiazoacetate, N2CHCOOEt, yield the bisdiazoalkane speciestrans-[M(N2CHCOOEt)2(dppe)2], upon simple replacement of the dinitrogen ligand by ethyldiazoacetate. However, diazomethane, N2CH2, reacts withA with loss of N2 to give products which we tentatively formulate as containing methylene ligands,trans-[M(CH2)2(dppe)2].
Herstellung von Bisdiazoalkan- und ähnlichen Komplexen aus den Reaktionen von Diazoverbindungen mit Distickstoffkomplexen des Typstrans-[M(N2)2(Ph 2PCH2CH2PPh 2)2] mitM=Mo oder W
Zusammenfassung Die Reaktion vontrans-[M(N2)2(dppe)2] (A:dppe=Ph 2PCH2CH2PPh 2 undM=Mo oder W) mit Ethyldiazoacetat, N2CHCOOEt, ergab nach einfachem Austausch des Distickstoffliganden mit Ethyldiazoacetat die Bisdiazoalkanetrans-[M(N2CHCOOEt)2(dppe)2]. Diazomethan (N2CH2) hingegen reagierte mitA unter Verlust von N2 zu Produkten, die tentativ alstrans-[M(CH2)2(dppe)2] mit Methylenliganden formuliert wurden.
  相似文献   

7.
The cyanomethylphosphonates 1 and the ethyl phosphoacetates 2 were reacted with some fluorophenylisothiocyanates to give the 2-thioxoethylphosphonates 3 in tautomeric equilibrium with the corresponding 2-mercaptovinylphosphonates 3 ′ and the 2-phosphoryl-3-thioxopropanoates 4 , respectively. Reaction of the cyanomethylphosphonates 1 with fluorophenylisothiocyanates in presence of methyliodide furnished the 2- thiometylvinylphosphonates 5 . The 2-mercaptovinylphosphonates 3 ′ reacted with ethyl chloroacetate in refluxing ethanol in the presence of triethylamine to give S-substitued derivatives 6 .  相似文献   

8.
The metal‐rich indides Ca2Pd2In and Ca2Pt2In were synthesised from the elements in sealed tantalum ampoules in an induction furnace. Both samples were investigated by X‐ray powder and single crystal diffraction: HT‐Pr2Co2Al type, C2/c, a = 1017.6(5), b = 574.1(3), c = 812.7(3) pm, β = 104.54(2)°, wR2 = 0.0344, 590 F2 values for Ca2Pd2In and a = 1004.3(3), b = 568.9(1), c = 813.1(2) pm, β = 104.25(2)°, wR2 = 0.0435, 654 F2 values for Ca2Pt2In with 25 variables per refinement. The structure contain Pd2 (272 pm) and Pt2 (264 pm) dumb‐bells with a trigonal prismatic coordination for each transition metal atom. These AlB2 related slabs are condensed via common edges. Together the palladium and indium atoms build up three‐dimensional [Pd2In] and [Pt2In] polyanionic networks in which the calcium atoms fill larger channels. The bonding of calcium to the network proceeds via shorter Ca–Pd and Ca–Pt contacts. Ca2Pd2In and Ca2Pt2In are Pauli paramagnets.  相似文献   

9.
Smog chamber/FTIR techniques were used to measure k(Cl + HCF2OCF2OCF2‐CF2OCF2H) = k(Cl + HCF2O(CF2O)n(CF2CF2O)mCF2H) = (5.0 ± 1.4) × 10?17 cm3 molecule?1 s?1 in 700 Torr of N2/O2 diluent at 296 ± 1 K. The Cl‐initiated atmospheric oxidation of HCF2OCF2OCF2CF2OCF2H and the sample of HCF2O(CF2O)n(CF2CF2O)mCF2H used in this work gave COF2 in molar yields of (476 ± 36)% and (859 ± 63)%, respectively, with no other observable carbon containing products (i.e., essentially complete conversion of both hydrofluoropolyethers into COF2). The results are discussed with respect to the atmospheric chemistry and environmental impact of hydrofluoropolyethers of the general formula HCF2O(CF2O)n(CF2CF2O)mCF2H. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 819–825, 2008  相似文献   

10.
BaAg2S2, a Thioargentate with the CaAl2Si2-Type Structure BaAg2S2 could be obtained as crystalline powder by the reaction of barium-bis[dicyanoargentate(I)] in a stream of hydrogensulfid at 500°C. Single crystals grew at 480°C in an evacuated glass ampoule filled with a flux of potassium thiocyanate and powdery BaAg2S2 as solid. BaAg2S2 crystallises in the trigonal CaAl2Si2-typ structure, a = 4.386(1) Å, c = 7.194(2) Å, space group P3 m1, Z = 1. The structure was determined from four-circle diffractometer data. The silver-sulphur distances are discussed with respect to the corresponding distances of the hitherto known alkaline earth-transition metal pnictides, also crystallizing in the CaAl2Si2-typ structure.  相似文献   

11.
Reactions of PhAsCl2 with BrMg(CH2)nMgBr (n = 4 or 5) in THF gave phenylarsacycloalkanes as colourless oily liquids which could be distilled under vacuum. Treatment of PhAs(CH2)n­with MCl2(RCN)2 (M = Pd or Pt; R = Ph­or Me) afforded mononuclear complexes, [MCl2{PhAs(CH2)n}2]. Reactions with [Pt2Cl2(μ‐Cl)2(PEt3)2] gave mixed‐ligand complexes, [PtCl2(PEt3){PhAs(CH2)n]. The palladium complexes adopt a trans geometry whereas the platinum complexes exist in a cis configuration. The crystal and molecular structure of [PdCl2(PhAsCH2CH2CH2CH2CH2)2] was determined by X‐ray diffraction methods. The molecule consists of a square‐planar palladium atom with trans chlorides and trans arsa ligands. The six‐membered ‘AsC5′ ring adopts a chair conformation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Complextrans-[Mo(N2)2(dppe)2] (dppe=Ph 2PCH2CH2PPh 2) reacts with NN=CHCOOEt in benzene solution to afford benzene-azomethane,Ph-N=N-CH3, as the main organic product. However, the phosphazene speciesPh 2P(N2CHCOOEt)(CH2CH2)P(N2CHCOOEt)Ph 2 is formed by irradiating aTHF solution oftrans-[W(N2)2(dppe)2] in the presence of ethyldiazoacetate; in moist solution, the phosphazene bonds undergo a partial hydrolysis, and the phosphonium species [Ph 2P(NHNCHCOOEt)(CH2CH2)P(NHNCHCOOEt)Ph 2]2+ appears to be formed.
Untersuchungen zu den Reaktionen der Distickstoff-Komplexetrans-[M(N2)2(Ph 2PCH2CH2PPh 2)2] (M=Mo oder W) mit Ethyldiazoacetat: Die Bildung einer Azoverbindung und eines Phosphazens
Zusammenfassung Die Komplexetrans-[Mo(N2)2(dppe)2] (dppe=Ph 2PCH2CH2PPh 2) reagieren mit NN=CHCOOEt in benzolischer Lösung zuPh-N=N-CH3 als organischem Hauptprodukt. Andererseits wird bei der Bestrahlung vontrans-[W(N2)2(dppe)2] inTHF-Lösung in der Gegenwart von Ethyldiazoacetat das PhosphazenPh 2P(N2CHCOOEt)(CH2CH2)P(N2CHCOOEt)Ph 2 gebildet; in feuchter Lösung erleidet die Phosphazen-Bindung eine teilweise Hydrolyse und die Phosphonium-Spezies [Ph 2P(NHNCHCOOEt)(CH2CH2)P(NHNCHCOOEt)Ph 2]2+ scheint gebildet zu werden.
  相似文献   

13.
Abstract

The nature of [(PhMe2CCH2)2GaCl]2 and its adducts with NH2(t-Bu) and NH2(n-Pr) have been investigated. [(PhMe2CCH2)2GaCl]2 crystallizes in the monoclinic space group P21/c with a=11.2495(16)Å, b = 21.4977(32)A, c = 7.8337(15)Å, β = 93.489(14)°, V= 1891.0(5)Å3 and D(calcd.)= 1.305 Mg/m3 for Z = 2. The structure was refined to R(F) = 4.2% for 1672 reflections above 6[sgrave](F). The molecule has perfect Ci symmetry, a planar Ga(μ-Cl)2Ga core and an expanded C(α)-Ga-C(α) angle of 137.9(3)° between the neophyl ligands. (PhMe2CCH2)2-GaCl[NH2(t-Bu)] crystallizes in the monoclinic space group P21/n with a = 6.4023(10) A, b= 17.4274(25) A, c = 22.2389(38) Å, β = 94.939(13)°, V= 2472.2(7)Å3 and D(calcd.) = 1.225 Mg/m3 for Z = 4. This structure was refined to R(F) = 3.9% for 1700 reflections above 6[sgrave](F). The crystal structure is stabilized by intermolecular Cl … H-N hydrogen bonds and the central Ga(III) atom has a distorted tetrahedral geometry. A benzene solution of (PhMe2-CCH2)2GaCl[NH2(t-Bu)] is in equilibrium with [(PhMe2CCH2)2GaCl]2[NH2(t-Bu)] and free amine according to 1HNMR studies. In contrast to this, a solution of (PhMe2CCH2)-GaCl2[NH2(t-Bu)] is in equilibrium with [(PhMe2CCH2)GaCl2]2[NH2(t-Bu)], free [(PhMe2-CCH2)-GaCl2]2 and free amine. Solutions of (PhMe2CCH2)2GaCI[NH2(n-Pr)] and (PhMe2CCH2)GaCl2[NH2(n-Pr)] show no evidence for similar equilibria.  相似文献   

14.
The Synthesis of Some 2H-Pyran-2-one Derivatives Derivatives of 6-unsubstituted 2H-pyran-2-one have been synthesized by several different methods. The 4-chloro-2H-pyran-2-one ( 9 ) is the most important, since it serves as starting material for the synthesis of different 4-substituted 2H-pyran-2-ones (Scheme 2). Also described are simple transformations of cumalic-acid derivatives producing 5-(2,2-dichlorovinyl)-2H-pyran-2-one ( 23 ), 2-oxo-2H-pyran-2-carbonitrile ( 26 ), and 4,5-bis(trifluoromethyl)-2H-pyran-2-one ( 32 ) (Scheme 3 and 4).  相似文献   

15.
[Et2Sn(O2AsMe2)2] ( 1 ) and [Ph2Sn(O2AsMe2)(μ‐OMe)]2 ( 2 ) were synthesized by treatment of Et2SnO and Ph2SnS with HO2AsMe2 in Methanol, respectively. The compounds were characterized by elemental analyses, vibrational spectroscopy and mass spectrometry. According to X‐ray diffraction measurements compound 1 crystallizes monoclinic in space group P21/n with cell parameters a = 804.89(3), b = 987.11(5), c = 966.42(4) pm, β = 113.354(3)°. The unit cell parameters of 2 , which crystallizes in the same space group, are a = 974.4(1), b = 1463.3(1), c = 1228.9(1) pm, β = 111.324(3)°. The (SnOAsO)4 rings of 1 are linked and form a two‐dimensional network with the SnEt groups pointing into the holes of the next layer. Compound 2 occurs as a dimer with internal Sn(OMe)2Sn bridges in the (SnOAsO)2 rings. The vibrational and mass spectra are given and discussed.  相似文献   

16.
Cd2Cu(PO4)2     
During an investigation of the insufficiently known system M1O–M2O–X2O5–H2O (M1 = Cd2+, Sr2+ and Ba2+; M2 = Cu2+, Ni2+, Co2+, Zn2+ and Mg2+; X = P5+, As5+ and V5+), single crystals of the novel compound dicadmium copper(II) bis[phosphate(V)], Cd2Cu(PO4)2, were obtained. This compound belongs to a small group of compounds adopting a Cu3(PO4)2‐type structure and having the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+; X = As5+, P5+ and V5+). The crystal structure is characterized by the interconnection of infinite [Cu(PO4)2]n chains and [Cd2O10]n double chains, both extending along the a axis. Exceptional characteristics of this structure are its novel chemical composition and the occurrence of double chains of CdO6 polyhedra that were not found in related structures. In contrast to the isomorphous compounds, where the M1 cations are coordinated by five O atoms, the Cd atom is coordinated by six. The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with the Cu, Mg and Zn cations. Sharing a common edge, two CdO6 polyhedra form Cd2O10 dimers. Each such dimer is bonded to another dimer sharing common vertices, forming [Cd2O10]n double chains in the [100] direction. The Cu atoms, located on an inversion centre (site symmetry ), form isolated CuO4 squares interconnected by PO4 tetrahedra, forming [Cu(PO4)2]n chains similar to those found in related structures. Conversely, the [Cd2O10]n double chains, which were not found in related structures, are an exclusive feature of this structure.  相似文献   

17.
[V_2(μ-S_2)_2(S_2CNEt_2)_4].2CH_3Cl was synthesized by the reaction of NaS_2CNEt_2,Li_2S andVOCl_3 at room temperature.Crystal data:M=1061.3,space group Pbca,with the orthorhombicparameters:a=20.123(3),b=20.485(4),c=10.911(3),V=4497.7,Z=4,D_c=1.57g/cm~3,Mo Kσradiation(λ=0.71069()?),μ=13.2 cm~(-1),F(000)=2168.Final R=0.041 and R_w=0.047 for 2288 ob-served reflections with I>3σ(1).The coordination sphere of each V atom in title compound is a dis-torted tetragonal prism composed of two bidentate dithiocarbamate and two S_(2~((2-)) ligands.The V—Vdistance is 2.890 while the V—S distances fall in the range of 2.422—2.505.  相似文献   

18.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

19.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

20.

The reaction of CuX2(X=Cl, Br) with 2-aminopyrimidine in aqueous solution, or 2-amino-5-bromopyrimidine in aqueous acid yields compounds of the forms [LCuCl2] n (1), [L2CuCl2] (2) and [L'2CuBr2] (3) [L=2-aminopyrimidine; L'=2-amino-5-bromo-pyrimidine]. The three compounds all form layered structures in which each copper ion is coordinated to two 2-aminopyrimidine molecules and two halide ions. Common structural threads involve bridging ligation [either by monomeric (1) or hydrogen bonded ligand dimers (2 and 3)], N-H···X and N-H···N hydrogen bonding and π-π stacking interactions as well as semi-coordinate Cu···X bond formation (1 and 2) or Br···Br interactions (3). Compounds 1 and 2 crystallize as two-dimensional coordination polymers with asymmetrically bihalide bridged (CuX2) n chains cross-linked into sheets by the 2-aminopyrimidine molecules (1) or by hydrogen bonded L2 dimers (2). The halide bibridged chains expand their primary copper coordination spheres to give 4 + 2 coordination spheres in 1 and 2. In 3, the layer structure involves coordination of the hydrogen bonded L'2 dimers and C-Br···Br- interactions. Crystal data: (1): monoclinic, P21/m, a=3.929(1), b=12.373(2), c=7.050(1)å, β=91.206(4)°, V=342.7(1)&Aringsup3;, Z=2, D calc= 2.225Mg/m3, μ=3.878 mm-1, R=0.0269 for [|I|≥3σ(I)]. For (2): triclinic, P-1, a=4.095(4), b=7.309(5), c=10.123(6) å, α=86.28(6), β=78.44(6), γ=74.55(8)°, V=286.1(4) Å3, Z=1, D calc=1.884 Mg/m3, μ=2.360 mm-1, R=0.0506 for [|I|≥2σ(I)]. For (3): triclinic, P-1, a=6.074(4), b=7.673(3), c=8.887(3) å, α=108.43(3) β=100.86(5), γ=106.96(4)°, V=357.0(3) Å3, Z=1, D calc=2.657 Mg/m3, μ=12.714mm-1, R=0.0409 for [|I|≥2σ(I)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号