首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main approaches to “assembling” of dendritic polymers of various architectures are considered. Types of dendritic polymers are generalized, and the main criteria for evaluating their topology, physicochemical properties, and application fields are outlined. The possibility of using commercially produced hyperbranched polymers for modification of the operation properties of polymeric materials is demonstrated. Particular attention is paid to the use of hyperbranched polymers as precursors for preparing modifiers of the surface properties of polymeric coatings.  相似文献   

2.
Dendronized polymers are a particularly interesting platform for the preparation of advanced semiconductors given their high degree of functionalization, monodispersity, and bulkiness. Despite advantageous features, the incorporation of dendritic moieties in semiconducting polymers is still relatively underexplored, and the impact on the optoelectronic, thermomechanical, and solid-state properties are difficult to predict. This work focuses on the incorporation of polyamidoamine (PAMAM) dendritic side chains to semicrystalline polymers based on diketopyrrolopyrrole. Using a versatile synthetic strategy based on the azide-alkyne Huisgen 1,3-dipolar cycloaddition, dendronized semiconducting polymers were prepared and the effect of the dendritic side chains on different properties were carefully characterized using different techniques. The dendritic side chains were found to reduce aggregation and crystallinity of the polymers in thin films. PAMAM-containing semiconducting polymers were also shown to have good charge transport properties in organic field-effect transistors, within the same order of magnitude to that of diketopyrrolopyrrole-based polymers bearing branched alkyl chains. This new design approach is particularly interesting to develop advanced semiconducting polymers given its synthetic versatility and the structural diversity of the dendronized moieties. Furthermore, the utilization of dendritic moieties in semiconducting polymers is a promising approach to fine-tune the thermomechanical properties toward semiconducting polymers for next-generation organic electronics.  相似文献   

3.
The morphology, supramolecular structure, and gas transport properties of thin membranes of polymers with different chemical structure are studied. The relationship between the supramolecular structure of the polymers and their morphology and gas transport properties is revealed. The polymers studied represent low-permeability materials and exhibit a high degree of selectivity for different gas pairs.  相似文献   

4.
Poly(ethylene succinate) and poly(butylene succinate) are synthetic biodegradable polymers, and much attention is paid to study the properties of pure polymers and the polymers modified by different comonomers and filling materials. The literature data on the physical properties of these polymers vary widely depending on their method of preparation and subsequent modifications. Most of the studies deal with low- and moderate-molecular-weight polymers or commercial grade polymers, modified by different comonomers and chain-extension agents. The data on pure high-molecular-weight polymers are scarce. In this work, we have prepared high-molecular-weight (MW range of (1.4–1.8) × 105) poly(ethylene succinate) and poly(butylene succinate) by direct polycondensation at 200°C in a nitrogen flow without chain-extension agents. We have further studied the properties of pure polymers and examined the effect of different fillers (carbon nanotubes, SiO2, Aerosil®) on the mechanical and physical properties of these polymers. Because of high-molecular-weight, the polymers possess increased tensile and storage moduli and thermostability. Even very low filler contents (up to 1 wt %) have a pronounced influence on the polymer properties: the polymer tensile and the storage modulus increases, the elongation at break decreases, and the thermal stability of the polymers decreases slightly. The effects of fillers are less pronounced compared with those for low- and moderate-molecular-weight polymers. When mixed together, poly(ethylene succinate) and poly(butylene succinate) crystallize independently from each other as evident from the mechanical and thermal analysis data.  相似文献   

5.
Radiation has been used as a processing tool to modify the properties of polymers. The aim of this study is to understand how electron beam radiation, together with pentaerythritol tetraacrylate (PTTA) as a tetra-functional monomer, can alter the properties (i.e. thermal and mechanical) and hydrolysis rates of PLGA and PLLA. The effects of radiation dose and PFM concentration on the physical properties of the polymers were investigated. The results showed that upon irradiation PLGA and PLLA cross-linked, and an increased in gel content was observed. Glass transition temperature (Tg) and mechanical properties of the polymers also increased. Cross-linked PLGA and PLLA samples were found to retard hydrolytic degradation. The mechanical properties of these polymers were also unaffected by hydrolysis. In summary, PLGA and PLLA cross-linked with PTTA were found to have enhanced mechanical properties and were able to retard hydrolytic degradation.  相似文献   

6.
金属纳米粒子由于其小的尺寸和大的比表面积等特点,使其具有独特的热性能、电性能、磁性能和光性能,以及很强的团聚趋势。因此金属纳米粒子是否被稳定在纳米尺度内,是它们能否表现出独特性能的关键。本文综述了非离子聚合物、聚电解质、两亲聚合物、双亲水聚合物、树状聚合物对金属纳米粒子的稳定作用及其稳定机理的研究进展。  相似文献   

7.
金属纳米粒子/聚合物体系的稳定性及其机理   总被引:1,自引:0,他引:1  
金属纳米粒子由于其小的尺寸和大的比表面积等特点,使其具有独特的热性能、电性能、磁性能和光性能,以及很强的团聚趋势。因此金属纳米粒子是否被稳定在纳米尺度内,是它们能否表现出独特性能的关键。本文综述了非离子聚合物、聚电解质、两亲聚合物、双亲水聚合物、树状聚合物对金属纳米粒子的稳定作用及其稳定机理的研究进展。  相似文献   

8.
刚性侧链型液晶高分子与含二维液晶基元的液晶高分子   总被引:8,自引:0,他引:8  
提出了“刚性侧链型液晶高分子”与“含二维液晶基元的液晶高分子”两个新概念。  相似文献   

9.
The mechanism of the reinforcing effect of fillers in polymer composition is studied and the relation between the properties and structure of materials is established. It is shown that, upon the addition of even a small amount of filler, properties of polymers change markedly due to intermolecular interactions. Variations in the composition of filled polymers and conditions of their preparation make it possibly to regulate properties of polymers within noticeably wide ranges. Specific features of polymer compositions filled with polymer fibers, the effect of fiber length, and the degree of orientation on the strength of composition are considered. For crosslinked epoxy urethane polymers, the effect of glass and polycaproamide (capron) fibers on the mechanical properties of polymer clutches in glassy and rubbery states is studied. The possibility to realize the shape memory effect for shrinkable filled polymer clutches is demonstrated.  相似文献   

10.
The structure and properties of glassy amorphous perfluorinated polymers are considered with an emphasis of their use as membrane material. The results of the study of free volume in these polymers and simulation of their nanostructure are discussed. The perfluorinated polymers are featured by unusual thermodynamic properties, so the influence of these properties on the parameters of the membranes based on them is examined. In conclusion, various applications of the membranes based on the perfluorinated polymers (predominantly amorphous Teflon AF) in separation processes are described.  相似文献   

11.
对聚苯胺、聚吡啶等共轭聚合物与非导电聚合物材料的复合体系的结构和性能进行了综述。不同方法制备的复合材料在结构和性能上各有特点。一般共轭聚合物与非导电高分子材料相容性差、尤其是低极性高分了。  相似文献   

12.
李启彭  罗家刚  和晓全  张泽俊 《化学通报》2016,79(11):1021-1027
手性配位聚合物因其结构多样性、可调控性以及潜在的多功能性,已经成为当前化学和材料学的研究热点。在合成中,可以通过选择特定的非手性配体、手性配体、手性溶剂或手性模板剂等来构筑手性配位聚合物。此外,还可以选择特定的金属离子赋予目标手性配位聚合物光、电、磁、催化和非线性光学等性能。本文详细综述了近年来纯手性配位聚合物的合成方法,以及在手性分离、手性催化、非线性光学、铁电和多铁等领域的应用研究进展。最后,对手性配位聚合物的合成方法及应用前景进行了展望。  相似文献   

13.
Two sets of water‐soluble poly(phenylene vinylene)s were synthesized and their optical properties were studied. The aqueous solubility of all these polymers is rendered by pendant sulfonate groups. One set of polymers (polymer I series) contains, in addition to the sulfonate pendants, dimethoxy substituents, while the other (polymer II series) contains oligo(ethylene oxide) side chains. Within each set, polymers containing lithium (Ia and IIa), sodium (Ib and IIb), and potassium (Ic and IIc) counter ions were prepared. The two sets of polymers showed different properties from physical appearance (fiber vs film) to thermal properties and to optical properties. It was found that set I polymers, with shorter side chains, exhibit stronger aggregation in aqueous solutions than set II polymers, which led to their lower fluorescence quantum yields and lower polymer‐to‐MV2+ quenching efficiencies. Within each set, the effect of counter ions on optical properties was noted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5123–5135, 2007  相似文献   

14.
In this review the grafting of polymer chains to solid supports or interfaces and the subsequent impact on colloidal properties is examined. We start by examining theoretical models for densely grafted polymers (brushes), experimental techniques for their preparation and the properties of the ensuing structures. Our aim is to present a broad overview of the state of the art in this field, rather than an in-depth study. In the second section the interactions of surfaces with tethered polymers with the surrounding environment and the impact on colloidal properties are considered. Various theoretical models for such interactions are discussed. We then review the properties of colloids with tethered polymer chains, interactions between planar brushes and nanocolloids, interactions between brushes and biocolloids and the impact of grafted polymers on wetting properties of surfaces, using the ideas presented in the first section. The review closes with an outlook to possible new directions of research.  相似文献   

15.
Branched polymers are among the most important polymers, ranging from polyolefins to polysaccharides. Branching plays a key role in the chain dynamics. It is thus very important for application properties such as mechanical and adhesive properties and digestibility. It also plays a key role in viscous properties, and thus in the mechanism of the separation of these polymers in size-exclusion chromatography (SEC). Critically reviewing the literature, particularly on SEC of polyolefins, polyacrylates and starch, we discuss common pitfalls but also highlight some unexplored possibilities to characterize branched polymers. The presence of a few long-chain branches has been shown to lead to a poor separation in SEC, as evidenced by multiple-detection SEC or multidimensional liquid chromatography. The local dispersity can be large in that case, and the accuracy of molecular weight determination achieved by current methods is poor, although hydrodynamic volume distributions offer alternatives. In contrast, highly branched polymers do not suffer from this extensive incomplete separation in terms of molecular weight.  相似文献   

16.
A strategy allowing the synthesis of linear, hyperbranched and dendritic polymers containing phosphorus is reported. A comparative study of the physical properties of these new polymers is presented.  相似文献   

17.
Three conjugated polymers containing oligothiophene units (from one to three thiophene rings) and aromatic 1,3,4-oxadiazole moieties have been successfully synthesized. The polymer structures were characterized and confirmed by (1)H and (13)C NMR, FT-IR, and elemental analysis. Thermogravimetric analysis demonstrated that the polymers are highly thermal stable. Tunable absorption (from 342 to 428 nm) and fluorescence (from 411 to 558 nm) properties of polymers were observed. The electrochemical investigation indicated that the LUMO and HOMO energy levels of the new polymers could be adjusted. It was also revealed by the electrochemical analysis that the polymers have good charge injection properties for both p-type and n-type charge carriers, as well as good color tunable luminescence and film-forming properties, which makes them potentially useful for fabricating efficient light-emitting devices.  相似文献   

18.
Polymers are an integral part of our daily life. Hence, there are constant efforts towards synthesizing novel polymers with unique properties. As the composition and packing of polymer chains influence polymer''s properties, sophisticated control over the molecular and supramolecular structure of the polymer helps tailor its properties as desired. However, such precise control via conventional solution-state synthesis is challenging. Topochemical polymerization (TP), a solvent- and catalyst-free reaction that occurs under the confinement of a crystal lattice, offers profound control over the molecular structure and supramolecular architecture of a polymer and usually results in ordered polymers. In particular, single-crystal-to-single-crystal (SCSC) TP is advantageous as we can correlate the structure and packing of polymer chains with their properties. By designing molecules appended with suitable reactive moieties and utilizing the principles of supramolecular chemistry to align them in a reactive orientation, the synthesis of higher-dimensional polymers and divergent topologies has been achieved via TP. Though there are a few reviews on TP in the literature, an exclusive review showcasing the topochemical synthesis of polymers with advanced structural features is not available. In this perspective, we present selected examples of the topochemical synthesis of organic polymers with sophisticated structures like ladders, tubular polymers, alternating copolymers, polymer blends, and other interesting topologies. We also detail some strategies adopted for obtaining distinct polymers from the same monomer. Finally, we highlight the main challenges and prospects for developing advanced polymers via TP and inspire future directions in this area.

This perspective showcases the potential of topochemical polymerization as an effective tool for synthesizing polymers with advanced molecular and supramolecular structures.  相似文献   

19.
The fabrication techniques now available for the production of highly oriented polymers are reviewed. These techniques include tensile drawing from both melt-spun and gel-spun polymers, extrusion under pressure from the melt, and hydrostatic extrusion, ram extrusion and die drawing in the solid phase. In addition, lyotropic and thermotropic liquid crystalline polymers offer new routes to very stiff and strong polymers. Following the review of processing methods, an account is given of low strain mechanical behaviour and its relationship to structure, thermal properties (including thermal conductivity and thermal expansion behaviour) and barrier properties (permeability to liquids and gases and solubility).  相似文献   

20.
Polymer topologies exert a significant effect on its properties, and polymer nanostructures with advanced architectures, such as cyclic polymers, star‐shaped polymers, and hyperbranched polymers, are a promising class of materials with advantages over conventional linear counterparts. Cyclic polymers, due to the lack of polymer chain ends, have displayed intriguing physical and chemical properties. Such uniqueness has drawn considerable attention over the past decade. The current review focuses on the recent progress in the design and development of cyclic polymer with an emphasis on its synthesis and bio‐related properties and applications. Two primary synthetic strategies towards cyclic polymers, that is, ring‐expansion polymerization and ring‐closure reaction are summarized. The bioproperties and biomedical applications of cyclic polymers are then highlighted. In the end, the future directions of this rapidly developing research field are discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1447–1458  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号