首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Thermal decomposition of some hydrocarbon and chlorinated hydrocarbon compounds in metal capillary tubes used in an inlet system for high speed gas chromatography has been investigated. The metal tube is cooled to about ?75°C by a flow of cold nitrogen gas in order to focus a vapor sample cryogenically. A capacitive discharge power supply is then used to heat the metal tube resistively in order to revaporize the sample and introduce it to the separation column as a plug 5-10 ms wide. The effects of tube temperature, tube material, sample vapor residence time, and type of carrier gas on thermal cracking are described. Use of a copper-nickel alloy tube resulted in less cracking than either pure platinum or pure nickel. Cracking is more significant with hydrogen as carrier gas than with helium. Cracking also increases with increasing sample residence time in the hot tube. Quantitative sample injection with minimum decomposition can be obtained for a variety of aliphatic and aromatic hydrocarbons and chlorinated hydrocarbon compounds.  相似文献   

2.
Several commercially available chromatographs have been evaluated with respect to their ability to support high speed chromatography. Both autoinjection and trap and thermal pulse injection are both found to be suitable procedures to deliver the required narrow sample injection peak widths. However, even with the appropriate injectors in place, the systems are burdened with relatively slow data acquisition rates and large amplifier time constants that further degrade system performance and make them unsuitable for the high speed chromatography discussed herein. The study was conducted using a computer implemented model of a gas chromatograph's output.  相似文献   

3.
A new system for CO2 measurement (0–100%) based on a paired emitter–detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO2 sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO2-insensitive luminophore by an acid–base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid–base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter–detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO2 response in terms of sensitivity.  相似文献   

4.
For the first time, a polypyrrole–carbon nanotubes–silicon dioxide composite film coated on a steel wire was prepared by an electrochemical method. Scanning electron microscopy images showed that this composite film was even and porous. The prepared fiber was used as an absorbent for the headspace solid‐phase microextraction of benzene, toluene, ethylbenzene, and o‐xylene, followed by gas chromatographic analysis. This method presented an excellent performance, which was much better than that of a polypyrrole–carbon nanotube fiber. It was found that under the optimized conditions, the linear ranges were 0.01–200 ng/mL with correlation coefficients >0.9953, the detection limits were 0.005–0.020 ng/mL, the relative standard deviations were 3.9–6.4% for five successive measurements with a single fiber, and the reproducibility was 5.5–8.5% (n = 3). Finally, the developed method was successfully applied to real water samples, and the relative recoveries obtained for the spiked water samples were from 91.0 to 106.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号