首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Di‐ and triblock copolymers with tetramethyleneoxy and trimethylene urethane repeating units were prepared by sequential polymerization of tetrahydrofuran (THF) and trimethylene urethane (TU) with the monofunctional initiator methyl trifluoromethanesulfonate (TfOMe) and the bifunctional initiator trifluoromethanesulfonic acid anhydride (TfOTf), respectively. The block copolymers obtained after purification show a uniform A‐B resp. A‐B‐A microstructure as was deduced from NMR and GPC analyses. The block copolymers are semicrystalline materials with distinct melting points of the poly(THF) and the poly(TU) domains.  相似文献   

2.
Initiators based on hydroxytelechelic polyethylene oxide, polytetrahydrofuran and polydimethylsiloxane were used for the anionic ring-opening polymerization of 2.2-dimethyltrimethylene carbonate (DTC). Under suitable conditions high yields of block copolymers of the AB and ABA types were obtained, depending on the initiator used. Ring-closing depolymerization of poly(2.2-dimethyltrimethylene carbonate) [poly(DTC)] and of copolymers containing poly(DTC) blocks with catalysts based on potassium or tin results under suitable conditions in DTC.  相似文献   

3.
In order to synthesize block copolymers consisting of segments having dissimilar properties, vinyl polymer - poly (α-amino acid) block copolymers were synthesized by two different methods. In the first method, the terminal amino groups of polysarcosine, poly(γ-benzyl L-glutamate), and poly(γ-benzyloxycarbonyl-L-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly (α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mo (CO)6 or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino cid) (the A component) and vinyl polymer(the B component). The characterization of block copolymers revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was most suitable for the synthesis of vinyl polymer - poly-(α-amino acid) block copolymers. In the second method, poly (methyl methacrylate) and polystyrene having a terminal amino group were synthesized by the radical polymerization in the presence of 2-mercaptoethylammonium chloride. Using these polymers having a terminal amino group as an initiator, the block polymerizations of γ-benzyl L-glutamate NCA and e-benzyloxycarbonyl-L-lysine NCA were carried out, yielding A-B-type block copolymer. By eliminating the protecting groups of the side chains of poly(α-amino acid) segment, block copolymers such as poly(methyl methacrylate) with poly(L-glutamic acid) or poly(L-lysine) and polystyrene with poly(L-glutamic acid) and poly(L-lysine) were successfully synthesized.  相似文献   

4.
Well-defined diblock copolymers of styrene(St) and ethylene oxide(EO) have been prepared by sequential living anionic polymerization of the two comonomers in THF.Diphenyl methyl potassum has been used as initiator.The block copolymers were characterized in detail by methods of size exclusion chromatography(SEC),^1H-NMR,FT-IR,dynamic mechanical analysis(DMA) and WAXD.  相似文献   

5.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Poly(ethylene oxide) [poly(EO)], with number-average molecular weights (Mns) of 1000 and 2000, and poly(tetrahydrofuran) [poly(THF)] with Mns of 1000 and 2000, possessing dichloroacetic acid ester end groups ( 1 , and 2 , respectively) were prepared from precursor diols by esterification with dichloroacetyl chloride in the presence of pyridine. 1 and 2 were subjected to the reaction with copper metal in DMSO to produce the corresponding segmented polyethers containing fumarate/maleate groups within the main chain ( 3 and 4 , respectively), through a polycondensation of carbalkoxy carbenoid intermedlates generated via α, α-dichloro elimination from the end groups of 1 and 2 . The radical polymerization of styrene in the presence of 3 and 4 produced network copolymers consisting of poly (EO) or poly(THF) and polystyrene segments. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A novel initiator containing pyrene, a fluorescent moiety, was prepared by reacting 1-aminopyrene and 2-bromoisobutyl bromide. The structure elucidation of the new initiator was carried out using various spectroscopic tools, as well as through single crystal X-ray diffraction studies. Novel, fluorescent amphiphilic block copolymers with a pyrene end-group, poly(styrene-b-acrylic acid) [P(S-b-AA)], poly(methyl methacrylate-b-dimethylaminoethyl methacrylate) [P(MMA-b-DMAEMA)], poly(styrene-b-tert-butyl acrylate) [P(S-b?t-BA)], poly(styrene-b-dimethylaminoethyl methacrylate) [P(S-b-DMAEMA)] were successfully synthesized by the atom transfer radical polymerization (ATRP) method, using CuBr as the catalyst and N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/N,N,N′,N″,N″-hexamethyltriethylenetetramine (HMTETA) as the complexing agent. The polymers were characterized by GPC, 1H-NMR, IR and UV-Vis spectroscopies. It was observed that as the polymerization time increased, both the conversion and the molecular weight increased linearly with time. The fluorescence properties of the polymers prepared were recorded. The physical properties and especially the pH dependent swelling properties of the amphiphilic block copolymers have been investigated. The utility of the block copolymers in the formation of stable dispersion of cadmium sulphide nanoparticles was investigated as a model study.  相似文献   

8.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

9.
1NTRODUCTIONSinceanionicpolymerizationhasthecharactersofnon--terminationandnon--chainstransferinallpolymersynthesisreactions,themolecularweightandmolecularweitghtdistributionofpolymerscanbecontrolledbyiteasily,soastopreparethepolymerswithexpectedfinestructures.Especially,theattentionisfocusedonthediblockcopolymersmanufacturedbythecomonomerswithdifferent.h....t.r.["ZJ,whichcancompatibilizethetwoincompatiblepolymersascompatibilizer['].InthesystemsofgelorlatexthediblockcOPolymerscanimprovet…  相似文献   

10.
Diblock and multiblock copolymers composed of a poly(D,L-lactide) (PLA) or poly(trimethylene carbonate) (PTMC) core with a hydrophilic chain of poly(ethylene glycol) (PEG) were prepared. These copolymers, in which the core is connected to PEG through a polyfunctional molecule such as citric, mucic, or tartaric acid, may be used to form nanoparticles for drug delivery applications. Branched copolymers were prepared by direct amidation between the polyfunctional acid and methoxy PEGamine, followed by ring-opening polymerization of lactide or trimethyl carbonate to form the PLA and PTMC block copolymers. In addition, a complex multiblock copolymer of biotin-PEG-poly[lactic-co-(glycolic acid)] (PLGA) for application in an avidin-biotin system was prepared for possible design of nanospheres with targeting properties. Studies of drug release from polymeric systems containing multiblock copolymers and studies of polymer degradation were also performed.  相似文献   

11.
(AB)f star block copolymers were synthesized by the radical polymerization of a poly(t‐butyl acrylate)‐block‐poly(methyl methacrylate) diblock macroinitiator with ethylene glycol dimethacrylate in methanol under UV irradiation. Diblock macroinitiators were prepared by diethyldithiocarbamate‐mediated sequential living radical copolymerization initiated by (4‐cyano‐4‐diethyldithiocarbamyl)pentanoic acid under UV irradiation. The arm number (f) was controlled by the variation of the initial concentration of the diblock initiator. It was found from light scattering data that such star block copolymers (f ≥ 344) not only took a spherical shape but also formed a single molecule in solution. Subsequently, we derived amphiphilic [arm: poly(acrylic acid)‐block‐poly(methyl methacrylate)] star block copolymers by the hydrolysis of poly(t‐butyl acrylate) blocks. These amphiphilic star block copolymers were soluble in water because the external blocks were composed of hydrophilic poly(acrylic acid) chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3321–3327, 2006  相似文献   

12.
用二苯甲烷钾为引发剂,阴离子聚合法合成了苯乙烯(St)-环氧乙烷(EO)嵌段共聚物,并用FTIR,^1H-NMR,SEC,WAXD和动态粘弹谱对共聚物进行了表征。结果表明所得聚合物为分子量可控,窄分布的两嵌段共聚物。  相似文献   

13.
Synthesis of poly(styrene-b-tetrahydrofuran (THF)-b-styrene) triblock copolymers was performed by transformation from living cationic into living radical polymerization, using 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) as a transforming agent. Sodium 4-oxy-TEMPO, derived from 4-hydroxy-TEMPO, reacted with the living poly(THF), which was prepared by cationic polymerization of THF using trifluoromethanesulfonic acid anhydride as an initiator, resulting in quantitative formation of the poly(THF) with TEMPO at both the chain ends. The resulting polymers were able to serve as a polymeric counter radical for the radical polymerization of styrene by benzoyl peroxide, to give the corresponding triblock copolymer in quantitative efficiency. The polymerization was found to proceed in accordance with a living mechanism, because the conversion of styrene linearly increased over time, and the molar ratio of styrene to THF units in the copolymer also increased as a result of increasing the conversion. The TEM pictures demonstrated that the resulting copolymers promoted microphase segregation. It was found that the films of these copolymers showed contact angles intermediate between those of poly(THF) and of polystyrene. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2059–2068, 1998  相似文献   

14.
用Cu(phen) 2 Br/1 PEBr催化引发体系合成了分子量为 50 0 0左右的溴端基聚苯乙烯 (PS Br) .以后者为大分子引发剂 ,在Cu( phen) 2 Br存在下引发甲基丙烯酸甲酯 (MMA)或丙烯酸丁酯 (BA)聚合 ,合成了二嵌段共聚物PS b PMMA和PS b PBA ,并通过GPC、IR、1H NMR及DSC等进行了表征 .实验发现 ,丙烯酸甲酯(MA)在Phen/CuCl/CCl4 催化引发下发生爆聚反应 ,仅当和异丁基乙烯基醚 (IBVE)才发生可控的自由基共聚合反应 .当MA和IBVE的投料摩尔比为 1∶1时 ,所得共聚物中两种单体链节的组成比为 1∶1 7左右 .  相似文献   

15.
Well defined BAB-type poly[styrene(ST)-b-2-methyl-2-oxazoline(MeOz)] was prepared by the cationic polymerization of α,ω-p-toluenesulfonic acid ester-terminated PST (PST-BTs) as an initiator. Alkaline hydrolysis of this block copolymer was carried out under various reaction conditions to obtain BAB-type poly[ST-b-ethylene imine(EI)]. Morphologies of these block copolymer specimens cast from several solvents were observed by electron microscope. The results are discussed in some detail.  相似文献   

16.
Poly[styrene (ST)-tetrahydrofuran (THF)-2-methyl-2-oxazoline(MeOz)] triblock and graft copolymers were prepared by ionic polymerizations. Poly(ST-THF) graft copolymers were synthesized by coupling of ST-4-vinylpyridine (4VP) copolymer with a large excess of PTHF dication. The ion coupling of PST dianion with PTHF dication was accompanied by the side reaction (abstraction of α proton of oxonium ion). After tosylation of terminal hydroxyl groups of PTHF blocks, cationic copolymerizations of MeOz with poly(ST-THF) block and graft copolymers were carried out, and characteristics of produced copolymers were investigated in some detail.  相似文献   

17.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

18.
Well-defined four-arm star poly(?-caprolactone)-block-poly(cyclic carbonate methacrylate) (PCL-b-PCCMA) copolymers were synthesized by combining ring-opening polymerization (ROP) with atom transfer radical polymerization (ATRP). First, a four-arm poly(?-caprolactone) (PCL) macroinitiator [(PCL-Br)4] was prepared by the ROP of ?-CL catalyzed by stannous octoate at 110°C in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2-bromoisobutyryl bromide. The sequential ATRP of CCMA monomer was carried out by using the (PCL-Br)4 tetrafunctional macroinitiator (MI) and in the presence of CuBr/2, 2′-bipyridyl system in DMF at 80°C with [(MI)]:[CuBr]:[bipyridyl] = 1:1:3 to yield block polymers with controlled molecular weights (Mn (NMR) = 10700 to 27300 g/mol) by varying block lengths and with moderately narrow polydispersities (Mw/Mn = 1.2–1.4). Block copolymers with different PCL: PCCMA copolymer composition such as 50:50, 70:30 and 74:26 were prepared with good yields (48-74%). All these block copolymers were well characterized by NMR, FTIR and GPC and tested their thermal properties by DSC and TGA.  相似文献   

19.
The surface activity of the poly–[block (ethylene oxide)]–poly [block (propylene oxide)]–poly [block (ethylene oxide)] copolymers (EO)x–(PO)y–(EO)x adsorbed together with dihexadecyl phosphoric acid (DHP), a synthetic phospholipid, is analyzed from their surface pressure and surface potential isotherms. The block copolymers of (EO)x–(PO)y–(EO)x with variable molecular weight (1100–14 000) were dissolved in the subphase for DHP monolayers. The concentration of the copolymers within the aqueous subphase were selected to render an initial surface tension of 60 mN/m. The simultaneous adsorption of the copolymer and DHP is attested by the observation of a liquid expanded state at large areas, absent for pure DHP monolayers. Above some critical surface pressure all copolymers cited above are expelled from the interface. The surface potential isotherms, which give information on the component of the molecular dipole moment normal to the plane of the monolayer, are interpreted in terms of changes in the copolymer conformation as well as in terms of the copolymer desorption from the air–liquid interface. For an equal hydrophobic/hydrophilic ratio, the size of the chains or molecular weight is decisive in the mechanism of the copolymer expulsion from the air–liquid interface.  相似文献   

20.
We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b- styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.67 (inverse-tapered), and tapered regions comprising 30 volume percent of the total polymer, were shown to self-assemble into the double-gyroid network morphology through a combination of small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The block copolymers were synthesized by anionic polymerization, where the tapered region between the pure poly(isoprene) and poly(styrene) blocks was generated using a semi-batch feed with programmed syringe pumps. The overall composition of these tapered copolymers lies within the expected network-forming region for conventional poly(isoprene-b-styrene) [P(I-S)] diblock copolymers. Dynamic mechanical analysis (DMA) clearly demonstrated that the order-disorder transition temperatures (T(ODT)'s) of the network-forming tapered block copolymers were depressed when compared to the T(ODT) of their non-tapered counterpart, with the P(I-SI-S) showing the greater drop in T(ODT). These results indicate that it is possible to manipulate the copolymer composition profile between blocks in a diblock copolymer, allowing significant control over the T(ODT), while maintaining the ability to form complex network structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号