首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylated polyrotaxane(Me PR) copolymer was prepared via the methylation of hydroxyl of threaded α-cyclodextrin(α-CDs) in polyrotaxane(PR) copolymer by CH_3I/Na H. Its structure was characterized by GPC, IR and NMR. The WXRD and TGA measurements showed the destruction of channel-like crystalline structure in Me PR copolymer. The sliding of threaded α-CDs along PEG axis in PR and Me PR copolymers was demonstrated by their dielectric spectra that also evidenced the presence of rotating of threaded α-CDs around PEG axis in Me PR copolymer. The frequent and vigorous molecular mobility in Me PR and PR copolymers was also verified by dynamic mechanical analysis(DMA) and rheological measurement, which was possibly assigned to the sliding and rotating of threaded α-CDs. DMA and rheological results showed that the mobility of α-CDs could simultaneously strengthen and toughen PR copolymer proved by stress-stain curves. In this paper, we report the CD mobility in PR and Me PR copolymers. The macroscopic behaviors of PR copolymer, such as mechanical properties in solid state, were also found to be benefited from CD mobility.  相似文献   

2.
叶霖 《高分子科学》2017,35(6):752-763
The methylated polyrotaxane (MePR) copolymer was prepared via the methylation of hydroxyl of threaded α-cyclodextrin (α-CDs) in polyrotaxane (PR) copolymer by CH3I/NaH. Its structure was characterized by GPC, IR and NMR. The WXRD and TGA measurements showed the destruction of channel-like crystalline structure in MePR copolymer. The sliding of threaded α-CDs along PEG axis in PR and MePR copolymers was demonstrated by their dielectric spectra that also evidenced the presence of rotating of threaded α-CDs around PEG axis in MePR copolymer. The frequent and vigorous molecular mobility in MePR and PR copolymers was also verified by dynamic mechanical analysis (DMA) and rheological measurement, which was possibly assigned to the sliding and rotating of threaded α-CDs. DMA and rheological results showed that the mobility of α-CDs could simultaneously strengthen and toughen PR copolymer proved by stress-stain curves. In this paper, we report the CD mobility in PR and MePR copolymers. The macroscopic behaviors of PR copolymer, such as mechanical properties in solid state, were also found to be benefited from CD mobility.  相似文献   

3.
A novel design of a biodegradable carrier for drug delivery was established by constructing a supramolecular assembly of drugs and polymer backbones without any covalent bonds. A biodegradable polyrotaxane was synthesized in which α-cyclodextrins (α-CDs) as drug carriers were threaded onto poly(ethylene glycol) chains which then were capped at each chain end by L -phenylalanine via peptide linkages. The release of α-CDs was observed only when the terminal peptide linkages were degraded.  相似文献   

4.
A sliding graft copolymer (SGC) with poly(ethylene glycol) (PEG) side chains was prepared by ester formation between terminal carboxyl groups of oxidized PEG methyl ether with molecular weight of 2000 (mPEG2000‐COOH) and hydroxyl groups of a polyrotaxane consisting of PEG and cyclodextrins (CDs). Formation of the SGC structure was confirmed by 1H NMR, attenuated total reflectance Fourier‐transformed infrared, and gel permeation chromatography. The SGC was soluble in good solvents of PEG and insoluble in poor solvents of PEG. Estimation of the number of grafted mPEG chains suggested a “rope‐curtain” like structure, in which an mPEG chain is connected to each CD ring. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A biocleavable polyrotaxane, having a necklace-like structure consisting of many cationic alpha-cyclodextrins (alpha-CDs) and a disulfide-introduced poly(ethylene glycol) (PEG), was synthesized and examined as a nonviral gene carrier. The polyrotaxane formed a stable polyplex having positively charged surface even at low charge ratio. This is likely to be due to structural factors of the polyrotaxane, such as the mobile motion of alpha-CDs in the necklace-like structure. Rapid endosomal escape was observed 90 min after transfection. The positively charged surface and the good buffering capacity are advantageous to show the proton sponge effect. The pDNA decondensation occurred through disulfide cleavage of the polyrotaxane and subsequent supramolecular dissociation of the noncovalent linkages between alpha-CDs and PEG. Transfection of the DMAE-SS-PRX polyplex is independent of the amount of free polycation. Those properties played a key role for delivery of pDNA clusters to the nucleus. Therefore, the polyplex nature and the supramolecular dissociation of the polyrotaxane contributed to the enhanced gene delivery.  相似文献   

6.
High molecular mobility of maltose-conjugated alpha-cyclodextrins (alpha-CDs) along a poly(ethylene glycol) (PEG) chain due to the mechanically locked structure of polyrotaxanes enhanced multivalent interactions between maltose and concanavalin A (Con A). When maltose groups are conjugated with alpha-CDs that were threaded onto a PEG capped with benzyloxycarbonyl l-tyrosine (polyrotaxane), Con A-induced hemagglutination was greatly inhibited by polyrotaxanes with a certain threading % of alpha-CDs. Such an inhibitory effect was significantly superior to the other type of conjugates, in which poly(acrylic acid) was used as a backbone for maltose conjugation. The spin-spin relaxation time (T2) of the maltose C(1) proton in the polyrotaxane at a typical alpha-CD threading % was significantly larger than that of any other conjugate, which was well related to the inhibitory effect. Therefore, we concluded that the high mobility of maltose groups along the polyrotaxane structure contributes to enhanced Con A recognition.  相似文献   

7.
We found that many α-CDs are threaded on a poly(ethylene glycol) (PEG) chain to form a crystalline complex in high yields, although β-CD did not form complexes with PEG. It was made clear that the relationship between the chain cross-sectional areas of the polymers and the diameters of the cavities of cyclodextrins is very important in the complex formation of polymers and cyclodextrins. Polyrotaxanes were prepared by the reaction of PEG–bisamine (PEGBA), which is PEG with amino groups in both ends, with 2,4-dinitro-1-fluorobenzene. In addition, the molecular tubes, a new family of novel nanostructures, were prepared and characterized. These findings indicate that such template synthesis provides a new approach to construct new nanostrutures, which may have implications for molecular technologies and materials science. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
A study has been conducted on the synthesis and characterization of a kind of novel polyrotaxanes comprising α cyclodextrins (α-CDs) threaded on triblock copolymers with poly(ethylene glycol) (PEG) as a central axle and flanked by two low molecular weight polystyrenes as outer stoppers.Styrene was allowed to telomerize with polypseudorotaxanes as chain transfer agents made from the self-assembly of a distal thiol-capped PEG with a varying amount of α-CDs in the presence of a redox initiation system at 40℃ in aqueous solutions.The resulting polyrotaxanes were characterized in detail by 1H-NMR,FTIR,XRD,TG and DSC analyses.The findings from the study demonstrated that the low molecular weight polystyrenes were successfully attached to two axle terminals of polypseudorotaxanes,and the number of α-CDs threaded onto the PEG backbone was tunable by varying its molar feeding ratio to some extent,while the polymerization degree of PS nearly remained constant in this radical telomerization process.  相似文献   

9.
Dimethylacetamide (DMAc) containing 8–9% (w/w) of lithium chloride (LiCl) or lithium bromide (LiBr) was found to be a good solvent for a polyrotaxane consisting of poly (ethylene glycol) (PEG) and α‐cyclodextrin (CD). In the new DMAc/LiCl solvent system, various modification reactions such as acetylation, direct dansylation, and reaction with acid chloride could be performed, which was unattainable in the previously reported solvents, i.e., dimethylsulfoxide (DMSO) and aqueous sodium hydroxide solution. Acetylation with acetic anhydride and direct dansylation of the polyrotaxane were investigated in detail in comparison with reactions in DMSO. The dissolution of the polyrotaxane in DMAc/LiCl suggested that the solubility and insolubility of the polyrotaxane is strongly in relation to the inter‐ and intramolecular hydrogen bonding of the polyrotaxane. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 532–538, 2006  相似文献   

10.
Thermo-responsive polyrotaxane (PR)-based triblock copolymers were synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide initiated with self-assemblies made from a distal 2-bromoisobutyryl end-capped Pluronic 17R4 (PPO14-PEG24-PPO14) with a varying amount of β-cyclodextrins (β-CDs) in the presence of Cu(I)Cl/PMDETA at 25 °C in aqueous solution. The molecular structure was characterized by means of H NMR, FTIR, WXRD, GPC, TGA and 1 DSC analyses. About half of β-CDs are still entrapped on the Pluronic 17R4 chain while the number of incorporated NIPAAm monomers is nearly a double feed value in the resulting copolymers. The aggregate morphologies in aqueous solution were evidenced by TEM observations. A two-step thermo-responsive transition arising from a combination of a polypseudorotaxane middle block with poly(N-isopropylacrylamide) flanking blocks was also demonstrated by turbidity measurements. Given their thermo-responsive behavior in aqueous solution, these PR-based triblock copolymers show the potential to be used as smart materials for the controlled drug delivery systems, biosensors, and the like.  相似文献   

11.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A study has been conducted on the synthesis and characterization of a kind of novel polyrotaxanes comprisingα- cyclodextrins (α-CDs) threaded on triblock eopolymers with poly(ethylene glycol) (PEG) as a central axle and flanked by two low molecular weight polystyrenes as outer stoppers.Styrene was allowed to telomerize with polypseudorotaxanes as chain transfer agents made from the self-assembly of a distal thiol-capped PEG with a varying amount ofα-CDs in the presence of a redox initiation system at 40~C in aqueous solutions.The resulting polyrotaxanes were characterized in detail by ~1H-NMR,FTIR,XRD,TG and DSC analyses.The findings from the study demonstrated that the low molecular weight polystyrenes were successfully attached to two axle terminals of polypseudorotaxanes,and the number ofα-CDs threaded onto the PEG backbone was tunable by varying its molar feeding ratio to some extent,while the polymerization degree of PS nearly remained constant in this radical telomerization process.  相似文献   

13.
Novel environmentally friendly poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ethylene glycol) (PHBV/PEG) copolymer networks were synthesized through free-radical solution polymerization with PHBV diacrylate (PHBVDA) and polyethylene glycol diacrylate (PEGDA) as macromers. The molecular structure of PHBV/PEG copolymer network was characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR). The morphology of the PHBV/PEG copolymer network was characterized by polarization optical microscopy. Thermal energy storage properties, thermal reliability and thermal stability were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis. The results indicated that the PHBV/PEG copolymer network hindered the growth of PEG crystalline segments or PHBV segments. PHBV/PEG copolymer network had a higher latent heat enthalpy, which didn’t reduce with the components of PHBV increased. Moreover, PHBV/PEG copolymer network still had good thermal stability even at 300 °C. These results suggested that such environmentally friendly copolymer network would have wide applications in phase change energy storage materials.  相似文献   

14.
A new type of biodegradable polymer material, poly(caprolactone)–poly(ethylene glycol) block copolymer (PCL-b-PEG), was synthesized by means of direct copolycondensation of ε-caprolactone with poly(ethylene glycol) in the presence of a Ti(OBu)4 catalyst. The degradability of the polycaprolactone was improved by introducing a PEG component into it. The degradation of PCL-b-PEG copolymer increase with a decreasing crystallinity of the copolymer, and can be controlled by adjusting the component ratio of the copolymer.  相似文献   

15.
聚氨酯-接枝-磺化聚氧乙烯的合成及其血液相容性研究   总被引:12,自引:0,他引:12  
通过梳状的磺化聚氧乙烯接枝共聚醚和4,4’ 二苯甲烷二异氰酸酯(MDI)反应,合成了磺酸根离子和聚氧乙烯复合修饰的聚氨酯(PEU g PEO SO3Na).通过血小板粘附试验对材料的体外抗凝血性试验表明将具有“类肝素”生物活性的磺酸根离子通过PEO为“间隔臂”固定在聚醚氨酯上,不仅可以有效地阻抗血小板的粘附、活化,还可以有效地阻断内外源凝血途径,具有较好的血液相容性.  相似文献   

16.
磷酸钙骨水(Calcium Phosphate Cement,CPC)是一种新型的人工骨材料,可用于人体骨缺损的修复,具有良好的生物相容性、骨传导性和骨替代性.然而,磷酸钙骨水泥的抗压强度较低,脆性较大,限制了其应用,因而提高抗压强度和减小其脆性成为CPC研究领域的一个重要课题.目前,普遍采用添加纤维的方法来提高CPC材料的抗压强度和韧性.然而大多数的纤维是非降解性的.  相似文献   

17.
Block copolymers with poly[3-methylmorpholine-2,5-dione] (PMMD) and poly[ethylene glycol] (PEG) blocks, PMMD-b-PEG-b-PMMD, were synthesized via ring-opening polymerization of 3-methylmorpholine-2,5-dione with amino-terminated PEG as the initiator at 140 °C within 10 h. Three kind of amino terminated PEG with different average molecular weight were used. The block copolymer was amorphous and the glass transition temperature decreased with increase of PEG block in the copolymer.  相似文献   

18.
PCL possesses a wide range of medical applications, such as tissue engineering and controlled drug release, because of its good biodegradability and miscibility. In order to extend the use of PCL, researchers have been exploring its structural and chemica…  相似文献   

19.
A novel poly(ethylene glycol)(PEG) analogue composed of aliphatic polyester backbone and pendant oligo(ethylene glycol) short chains is reported.The PEG analogue is a copolymer synthesized by ring-opening alternating copolymerization of succinic anhydride with 2-((2-(2-metho xyethoxy)ethoxy)methyl)oxirane.The structure of the copolymer was confirmed by ~1H NMR spectrum.The effects of the monomer feed ratio on the copolymerization were studied and the polymerization mechanism was given.The PEG analogue di...  相似文献   

20.
生物降解性高分子具有在生理条件下可以自行降解、代谢,使之被机体吸收或被排泄的特点,因此可以免除在进入体内后需再经手术方法取出的麻烦。由此,生物降解性高分子在作为药物释放体系的药物载体和在医疗上作为外科手术组织修饰材料等方面具有十分广阔的应用前景,并且成为当前生物医用高分子领域的一个重要的研究课题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号