首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the pressure drop on the efficiency and speed of analysis in packed and open tubular supercritical fluid chromatography (SFC) is described: methods previously developed to describe the effects of mobile phase compressibility on the performance of open tubular columns in SFC have been extended to packed columns. The Horvath and Lin equation has been used to elucidate the influence of variations in velocity, diffusivity, and capacity factor along the column on the overall efficiency of packed column SFC. In packed columns, in contrast with the situation in open tubular columns, because the increase in velocity is no longer compensated by an increase in diffusion coefficients, the increase in both linear velocity and capacity factor which result from a significant pressure drop cause the plate height to increase along the column. The effect of fluid decompression along the length of the column on the speed of analysis in SFC has been studied and numerical expressions derived which enable calculation of compressibility correction factors for the plate height. Both the f1 and f2 correction factors remain very close to unity for acceptable pressure drops, which means that the pressure drop has virtually no effect on the number of plates generated per unit time for an unretained component. For retained species, the decompression of the mobile phase across the column causes the capacity factor to increase and hence leads to increased analysis times.  相似文献   

2.
The implementation of columns packed with sub-2 μm particles in supercritical fluid chromatography (SFC) is described using neat carbon dioxide as the mobile phase. A conventional supercritical fluid chromatograph was slightly modified to reduce extra column band broadening. Performances of a column packed with 1.8 μm C18-bonded silica particles in SFC using neat carbon dioxide as the mobile phase were compared with results obtained in ultra high performance liquid chromatography (UHPLC) using a dedicated chromatograph. As expected and usual in SFC, higher linear velocities than in UHPLC must be applied in order to reach optimal efficiency owing to higher diffusion coefficient of solutes in the mobile phase; similar numbers of theoretical plates were obtained with both techniques. Very fast separations of hydrocarbons are presented using two different alkyl-bonded silica columns.  相似文献   

3.
N. Wu  R. Yee  M. L. Lee 《Chromatographia》2000,53(3-4):197-200
Summary Fast separations of perfluorinated polyethers and polymethylsiloxanes that are composed of 50–80 oligomers were demonstrated in packed capillary column supercritical fluid chromatography (SFC) using a carbon dioxide mobile phase. Separations were accomplished within 10 min using a 13 cm×250 μm i.d. column packed with 2 μm porous octadecyl bonded silica (ODS) particles. Effects of particle diameter of the packing material and pressure programming on separation were investigated, and packed column SFC was compared with open tubular column SFC. Results show that as the particle diameter was decreased from 5 to 3 to 2 μm and the column length was reduced from 85 to 43 to 13 cm, the separation time could be reduced from 70 to 20 to 10 min while still maintaining similar separation (resolution). Short columns packed with small porous particles are very suitable for fast SFC separations of polymers.  相似文献   

4.
Summary The efficiency of packed columns was measured as a function of flow rate, temperature, outlet density, and the density differential across the column, unsing pure carbon dioxide as the mobile phase. Although density differentials are often blamed for a serious loss in efficiency in packed column supercritical fluid chromatography, the results show that efficiency was not a function of the density differential. Peak shapes suggest that apparent loss in efficiency is actually due to inadequate solubility of the solute in carbon dioxide.  相似文献   

5.
Summary Evaporative light scattering detectors can be used to detect organic substances without chromophoric groups in packed column supercritical fluid chromatography (SFC). A detector of this type has been used to detect squalane and glucose after SFC with various packed columns and binary mobile phases. In this study, the amount of organic modifier in carbon dioxide/modifier mixtures was varied. The results give further insight into the mechanisms that influence retention behaviour in packed column separations with super- and subcritical mobile phases. Squalane is an ideal non-polar test solute which shows long retention times on non-polar columns while its elution can be accelerated by non-polar modifiers in carbon dioxide. Glucose is an extremely polar solute containing hydroxyl groups. Elution of this sugar can be improved with polar modifiers. Column packings with polar end groups lead to high capacity ratios and long retention times for glucose. Most columns used in this study contained silica-based packing materials. For purposes of comparison, a polymeric packing (HEMA RP-18) was also employed.  相似文献   

6.
Summary Evaporative light scattering detectors have, in recent years, gained acceptance in chromatography with dense mobile phases i.e. liquid and supercritical fluid chromatography. In the present work an instrument of this type has been used in packed column supercritical fluid chromatography with carbon dioxide/methanol mixtures. Detector response and signal-to-noise ratios have been determined using squalane as test compound. Nebulizer gas flow, evaporator temperature, photomultiplier sensitivity, and mobile phase composition were found to have an influence on instrument performance. With this type of detector the field of packed column SFC applications can be extended to include non-UV-absorbing substances even when mixed mobile phases or composition gradients are necessary for the separation.  相似文献   

7.
Paproski RE  Cooley J  Lucy CA 《The Analyst》2006,131(3):422-428
Two approaches for decreasing diesel hydrocarbon group-type separation times by normal phase supercritical fluid chromatography (SFC) are compared. Short (10-15 cm) columns with small 3 microm diameter packing are compared with monolithic Chromolith bare silica columns under high carbon dioxide flow rates approaching 5 ml min(-1). Elution times are reduced up to 13-fold on a 10 cm Chromolith column and 7-fold on the short packed columns compared with conventional length columns run at typical flow rates. Short packed columns, with their higher surface area and retention characteristics, offer higher resolutions compared with Chromolith columns. Diesel samples are separated into saturates, mono-, di-, tri-, and polyaromatics in as little as 2 min on a 10 cm packed silica column. Diesel group-type results on a 15 cm titania-silica coupled column compare favorably with results from longer columns.  相似文献   

8.
填充柱超临界流体色谱系统中的溶剂效应   总被引:2,自引:0,他引:2  
陆峰  刘荔荔  吴玉田 《色谱》2000,18(2):155-157
 考察了填充柱超临界流体色谱法 (SFC)中的样品溶剂及连续进样等因素对化合物保留行为变化的影响规律。以超临界 CO2 或含低体积分数甲醇的 CO2 为流动相时 ,氨基柱上组分的保留时间随着样品溶剂的极性增大而增大 ,而溶剂对 C1 8柱上组分的保留时间影响不大 ;在 C1 8柱上 ,溶剂对连续进样的后续效应不强 ;而在氨基柱上 ,甲醇溶液的后续效应比丙酮、氯仿溶液的后续效应强。当甲醇的体积分数大于 1 .0 %时 ,溶剂的效应明显减弱。这种变化规律对填充柱 SFC的合理进样并获得重现性良好的色谱数据具有实际意义。  相似文献   

9.
Whereas the retention rules of achiral compounds are well defined in high-performance liquid chromatography, on the basis of the nature of the stationary phase, some difficulties appear in super/subcritical fluid chromatography on packed columns. This is mainly due to the supposed effect of volatility on retention behaviours in supercritical fluid chromatography (SFC) and to the nature of carbon dioxide, which is not polar, thus SFC is classified as a normal-phase separation technique. Moreover, additional effects are not well known and described. They are mainly related to density changes of the mobile phase or to adsorption of fluid on the stationary phase causing a modification of its surface. It is admitted that pressure or temperature modifications induce variation in the eluotropic strength of the mobile phase, but effects of flow rate or column length on retention factor changes are more surprising. Nevertheless, the retention behaviour in SFC first depends on the stationary phase nature. Working with polar stationary phases induces normal-phase retention behaviour, whereas using non-polar bonded phases induces reversed-phase retention behaviour. These rules are verified for most carbon dioxide-based mobile phases in common use (CO(2)/MeOH, CO(2)/acetonitrile or CO(2)/EtOH). Moreover, the absence of water in the mobile phase favours the interactions between the compounds and the stationary phase, compared to what occurs in hydro-organic liquids. Other stationary phases such as aromatic phases and polymers display intermediate behaviours. In this paper, all these behaviours are discussed, mainly by using log k-log k plots, which allow a simple comparison of stationary phase properties. Some examples are presented to illustrate these retention properties.  相似文献   

10.
The effects of the pressure drop across the column on retention and efficiency in SFC have been studied. Numerical methods are described which enable the prediction of hold-up time and pressure drop in both packed and open tubular columns. Predictions of both hold-up time and pressure drop are in good agreement with experimental data. The density gradient along the column can be calculated using the numerical methods and a procedure is described which enables the calculation of the overall capacity factors of the solutes from the density profile in the column. Significant variations of the capacity factor are observed along the column. The effect of the density gradient along the column on local diffusivity and dispersion is studied. The column efficiency in systems with significant pressure drops is affected by changes in: the linear velocity of the mobile phase; the diffusion coefficients; and the capacity factors of the solutes along the column. The overall efficiency of the chromatographic system can be calculated if, as is the case for open tubular columns, adequate plate height equations are available.  相似文献   

11.
Summary A novel inorganic synthetic clay material (SC) has been evaluated as the stationary phase in packed-column, supercritical fluid chromatography (SFC). The molecular recognition capability of the SC stationary phase in SFC for polycyclic aromatic hydrocarbons has been evaluated using carbon dioxide and carbon dioxide modified with methanol as the mobile phase. This recognition derives from the layer structure of the SC material which acts as a slit to distinguish non-planar solutes from the molecular-molecular interaction between solute and stationary phase and leads to smaller retention for non-planar solutes. The recognition capability is also dependent on the SFC conditions such as column pressure and column temperature.  相似文献   

12.
黄酮醇异构体的超临界流体色谱法分离   总被引:9,自引:0,他引:9  
刘志敏  赵锁奇  王仁安  杨光华 《色谱》1997,15(4):288-291
用超临界流体色谱法进行了黄酮醇异构体的分离研究。考察了温度、压力、流动相组成、柱条件等对分离的影响。在实验的温度范围40~60℃和压力范围15~30MPa内,这组化合物都能得到很好的分离;流动相组成是影响色谱分离的最显著的因素,磷酸的加入大大改变了各物质的保留行为;考察了三种硅胶基质键合相对分离的影响,发现苯基柱用于这组异构体的分离最为合适。  相似文献   

13.
Bhoir IC  Patil ST  Sundaresan M 《Talanta》1999,48(5):435-1189
Studies of speed, resolution, and selectivity have shown that packed column supercritical fluid chromatography (PCSFC) is a viable technique for the isocratic, isothermal and isobaric separation of seven anticonvulsants, viz., phenobarbitone, phenytoin sodium, phethenylate sodium, nitrazepam, clonazepam, carbamazepine, and primidone, and their simultaneous estimation. The drugs were eluted from a JASCO, RP-C18 (250×4.6 mm) 10 μ packed column with a binary mobile phase of carbon dioxide and methanol, using ibuprofen as the internal standard. The effect of pressure, temperature, modifier concentration, and the rate of flow of CO2 on retention and selectivity of all the analytes were studied and the parameters optimised. Without methanol in the mobile phase none of the solutes eluted. Changing modifier concentration was the most effective physical parameter for changing retention and selectivity. The analytes were detected using a UV detector at 215 nm. An arbitrary mixture of eight components was baseline resolved in 7 min. The study includes a successful attempt at quantification of the drugs. Chromatographic and analytical figures of merit have been listed. The present work holds promise for a possible replacement of HPLC with SFC for the separation and assay of drugs of different families.  相似文献   

14.
When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as “supercritical fluid chromatography” or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data.  相似文献   

15.
Bari VR  Dhorda UJ  Sundaresan M 《Talanta》1997,45(2):297-302
A reproducible and efficient method for the separation and estimation of ibuprofen, chlorzoxazone and acetaminophen has been developed using packed column supercritical fluid chromatography (SFC). The separations were performed on an ODS-RP JASCO column employing methanol modified supercritical fluid CO(2) as the mobile phase. The densities and polarities of the mobile phase were optimised from the effects of pressure, temperature and modifier concentration on retention times. In addition a flow programming of the mobile phase helped to obtain better resolution and a faster elution for acetaminophen. The analytes were detected using a uv detector at 254 nm. The study includes a successful attempt at quantitation of the 3 drugs. Chromatographic figures of merit, linear dynamic range, limit of quantitation (LOQ), precision and accuracy etc. were determined to assess the viability of the method. The method has been extended to commercial dosage forms containing all 3 drugs.  相似文献   

16.
A tandem-column method using Chiralpak AD-H and Chiralcel OD-H columns was achieved for baseline separation of a mixture of chiral pharmaceutical compounds (i.e., four stereoisomers) via supercritical fluid chromatography (SFC) with a mobile phase consisting of 90% liquid carbon dioxide and 10% ethanol:isopropanol (50:50 v/v). On the contrary, this mixture (mixture A) could not be baseline separated by SFC conditions explored with individual Chiralpak AD-H and Chiralcel OD-H columns. The effects of various mobile phases on elution order, capacity factor, selectivity, and resolution were determined with mixture A on the individual aforementioned columns to develop the tandem-column method.  相似文献   

17.
Summary The application of capillary supercritical fluid chromatography (SFC) to the analysis of a middle distillate fuel is described. Small diameter (50m i.d.) fused-silica capillary columns coated with crosslinked 50% phenyl polymethylphenyl siloxane provided high separation efficiency and good compatibility with flame ionization detection. High resolution separations of the chemical class fractions obtained by adsorption chromatography on alumina were obtained using carbon dioxide as the supercritical mobile phase and simple pressure programming techniques. In addition to the less polar fuel components, supercritical carbon dioxide allowed chromatography of the nitrogen-containing polycyclic aromatic hydrocarbon fraction and the hydroxylated polycyclic aromatic materials.  相似文献   

18.
Alkylphenol polyethoxylates (APEs) are a widely used group of nonionic surfactants in commercial production. Characterization of the composition of APE mixtures can be exploited for the determination of their most effective uses. In this study sample mixtures contain nonylphenol polyethoxylates and octylphenol polyethoxylates. The separation of individual alkylphenols by ethoxylate units is performed by supercritical fluid chromatography (SFC)-UV as well as normal-phase high-performance liquid chromatographic (HPLC)-UV employing packed columns. The stationary phase and column length are varied in the SFC setup to produce the most favorable separation conditions. Additionally, combinations of packed columns of different stationary phases are tested. The combination of a diol and a cyano column is found to produce optimal results. An advantage of using packed columns instead of capillary columns is the ability to inject large amounts of sample and thus collect eluted fractions. In this regard, fractions from SFC runs are collected and analyzed by flow injection analysis-electrospray ionization-mass spectroscopy in order to positively identify the composition of the fractions. In comparing the separation of APE mixtures by SFC and HPLC, it is found that SFC provides shorter retention times with similar resolution. In addition, less solvent waste is produced using SFC.  相似文献   

19.
An electron-capture detector (ECD) was used in packed column supercritical fluid chromatography (SFC) for the selective determination of chlorinated pesticides. The separation of chlorinated pesticides was conducted on an ODS-silica gel column using carbon dioxide as a mobile phase without a modifier. The detection temperature of ECD was set to 325°C according to the peak sensitivities. The SFC/ECD system was applied to the determination of γ-BHC and p, p′-DDD in carrots extracted by supercritical fluid extraction. The recoveries of γ-BHC and p, p′-DDD obtained by the SFC/ECD were 93.9 and 93.2%, respectively.  相似文献   

20.
Summary Effects of column temperature on the retention behaviour of aromatic hydrocarbons and dialkyl phthalates were investigated in capillary supercritical fluid chromatography (SFC) with carbon dioxide as the mobile phase. Negative temperature programming could partly replace pressure programming. Positive temperature programming was applicable to solutes with proper volatility, in which gas chromatography-like retention mechanism (partition process) was involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号