首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Random copolymers of n-butyl acrylate (BA) and cyclohexyl acrylate (CHA) were synthesized by solution polymerization in cyclohexane. Blends of polystyrene with the poly(CHA-stat-BA) copolymers were prepared by solvent casting and coprecipitation. The miscibility of the blends was characterized by means of differential scanning calorimetry. While blends with a low content of CHA in the copolymer showed two characteristic glass-transition temperatures of the corresponding blend components, those with a CHA content higher than 70% presented good compatibility. Phase separation of the miscible blends took place after annealing at 200 °C for 1 h, which implies an upper miscibility gap (lower critical solution temperature).  相似文献   

2.
Numerous previous studies have established that the addition of a microphase-ordered AB diblock copolymer to a thin homopolymer A (hA) film can slow, if not altogether prevent, film rupture and subsequent film dewetting on a hard substrate such as silica. However, only a few reports have examined comparable phenomena when the hA/AB blend resides on a soft B-selective surface, such as homopolymer B (hB). In this work, the dewetting kinetics of thin films composed of polystyrene (PS) and a symmetric poly(styrene-b-methyl methacrylate) (SM) diblock copolymer on a poly(methyl methacrylate) substrate is investigated by hot-stage light microscopy. Without the SM copolymer, the dewetting rate of the PS layer is constant under isothermal conditions and exhibits Arrhenius behavior with an apparent activation energy of approximately 180 kJ/mol. Addition of the copolymer promotes a crossover from early- to late-stage dewetting kinetics, as evidenced by measurably different dewetting rates. Transmission electron microscopy reveals the morphological characteristics of dewetted PS/SM films as functions of film thickness and SM concentration.  相似文献   

3.
Theoretical guidelines are established for designing miscible blends of amorphous polyolefin copolymers. On the basis of calculations for an athermal and incompressible model of copolymer melts, limits are placed on the compositions and structural differences between blend components that are consistent with thermodynamic stability of a single liquid phase. Specific cases analyzed include binary blends of random copolymers containing short branches and blends of graft polymers with long flexible branches, either periodically or randomly placed. The predictions are shown to be in good agreement with recent experimental studies of miscibility in model polyolefin copolymer blends. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Macromolecule/laponite nanomaterials were studied by DSC and X-ray diffraction techniques. The matrices are poly(ethylene) glycols at various molecular masses and poly(ethylene oxides)-poly(propylene oxides)-poly(ethylene oxides) tri-block copolymers. The latter were tuned by modulating the molecular masses, at constant hydrophilic/hydrophobic ratio, and the hydrophilicity. For all the investigated systems, the enthalpy of melting (ΔH m) is nearly constant up to a given composition thereafter it increases monotonically reaching the value of the pure macromolecule. We proposed a model to interpret the DSC data. Briefly, it was invoked a mechanism of interaction following which some segments of the adsorbed macromolecule are anchored to the laponite (RD) particles and the remaining segments are radiating away from the surface. The portion of the macromolecule in contact with RD does not contribute to ΔH m whereas that radiating away from the clay does. Once that the RD surface is saturated, the excess of the macromolecule behaves like the pure one. The proposed model allowed to compute successfully the ΔH m values. The X-ray diffraction experiments ruled out the polymer intercalation between the silicate sheets.  相似文献   

5.
Precipitation of poly(methyl methacrylate) (PMMA) from dimethyl sulfoxide solution by addition of water as a precipitant was studied in the presence of a well-characterized graft copolymer of poly(vinyl alcohol) (PVA). The graft copolymer which had been prepared by a radiation method and freed from PMMA and PVA homopolymers had one PMMA branch whose length was nearly equal to that of the PVA backbone. Even when such an amount of water was added to PMMA solution as to cause all the PMMA to precipitate from the solution, the precipitation was prevented by the presence of relatively small amounts of the graft copolymer. With decreasing molecular weight of PMMA, the effect of protection became more pronounced. When the precipitation was prevented, the solution was transformed into a stable emulsion. The mechanism of protection against precipitation was discussed on the basis of the results obtained and electron microscopic photographs of the emulsion particles. It was concluded that the particles of the precipitated homopolymer were covered by a monolayer of the graft copolymer, resulting in prevention of coagulation.  相似文献   

6.
We use polymer random phase approximation (RPA) theory to calculate the microphase separation transition (MST) spinodal for an AB + C diblock copolymer–homopolymer blend where the C homopolymers are strongly attracted to the A segment of the copolymers. Our calculations indicate that one can shift the MST spinodal value of the A ? B segmental interaction parameter (χABN)S to significantly lower values [i.e., (χABN)S < 10.5] upon the addition of a selectively attractive C homopolymer. For a sufficiently attractive C homopolymer, (χABN)S can be pushed to negative values, indicating microphase separation in what would appear to be a completely miscible diblock copolymer. Furthermore, we show that microphase separation can occur in diblock copolymer–homopolymer blends where the segmental interactions between all polymer constituents are attractive. By tuning the value of (χABN)S with a homopolymer additive, one is therefore able to tune the effective copolymer segregation strength and thus dramatically affect the blend phase behavior. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2083–2090, 2009  相似文献   

7.
A small-angle neutron scattering method has been developed to determine the chain conformation of homopolymer chains dispersed in a block copolymer matrix. Two contrast matching techniques are used to achieve this result and are demonstrated for a system based on a styrene-hydrogenated butadiene-styrene triblock copolymer and a hydrogenated butadiene homo-polymer. Composition matching uses a blend of labeled and unlabeled molecules to match the scattering density of another component. Phase matching requires a block copolymer which has been synthesized such that the scattering densities of the blocks are equal. This polymer provides a transparent matrix in which a composition-matched blend of homopolymer can be dispersed to isolate the single-chain scattering function of the homopolymer chains.  相似文献   

8.
The interfacial tension of three different binary polymer blends has been measured as function of time by means of a pendent drop apparatus, at temperatures ranging from 24 degrees C to 80 degrees C. Three grades of polybutene (PB), differing in average molecular weight and polydispersity, are used as dispersed phase, the continuous phase is kept polydimethylsiloxane (PDMS), ensuring different asymmetry in molecular weight across the interface. The interfacial tension changes with time and, therefore, this polymer blends can not be considered fully immiscible. Changes in interfacial tension are attributed to the migration of low-molecular weight components from the source phase into the interphase and, from there, into the receiving phase. In the early stages of the experiments, just after the contact between the two phases has been established, the formation of an interphase occurs and the interfacial tension decreases with time. As time proceeds, the migration process slows down given the decrease in driving force which is the concentration gradient and, at the same time, molecules accumulated in the interphase start to migrate into the "infinite" matrix phase. A quasi-stationary state is found before depletion of the low-molecular weight fraction in the drop occurs and causes the interfacial tension sigma(t) to increase. The time required to reach the final stationary value, sigma(stat), increases with molecular weight and is a function of temperature. Higher polydispersity leads to lower sigma(stat) and a weaker dependence of sigma(stat) on temperature is found. A model coupling the diffusion equation in the different regimes is applied in order to interpret the experimental results. Numerical solutions of the diffusion equation are proposed in the cases of a constant and a changing interphase thickness. In the latter case, the interphase is defined by tracking with time a fixed limiting concentration in the transient concentration profiles and the variations found in sigma(t) are attributed to the changes in the interphase thickness. A discrete version of this continuous model is proposed and scaling arguments are reported in order to compare the results obtained with the predictions of the continuous model. The kinetic model as proposed by Shi et al. [T. Shi, V.E. Ziegler, I.C. Welge, L. An, B.A. Wolf, Macromolecules 37 (2007) 1591-1599] appears as a special case of the discrete model, when depletion is not taken into account. Using the models, time scales for the diffusion process can be derived, which fit the experimental results quite well.  相似文献   

9.
Silica nanoparticles (17 ± 4 nm in diameter) were modified by grafting polystyrene chains to the surfaces using atom transfer radical polymerization (ATRP). The molecular weight of the grafted chains ranged from 8 to 48 kDa. These modified nanoparticles were mixed in solution with poly(styrene) homopolymer (18–120 kDa) and symmetric poly(styrene‐b‐butadiene) (PS‐PB) diblock copolymer (34–465 kDa) and the states of dispersion in the dried composites were characterized by transmission electron microscopy (TEM). In the so‐called wet brush limit, when the graft molecular weight equals or exceeds the matrix value, the silica particles form a uniform random dispersion in poly(styrene). Increasing the homopolymer matrix, molecular weight above the graft value results in particle clustering and macroscopic‐phase separation. Mixtures of the lamellar forming block copolymer and nanoparticles exhibit a very different trend, with particle clustering at the lower PS‐PB molecular weights and dispersion at the highest value. This latter finding is rationalized on the basis of packing constraints associated with lamellar order and the effective particle dimensions, and the degree of solvation at ordering, both of which favor higher molecular weight block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2284–2299, 2007  相似文献   

10.
11.
Morphological variations of ABC triblock copolymers through the blending of B or A/C homopolymers, all with short chain lengths, were studied experimentally. The samples were symmetric ISP triblock copolymers, where I, S, and P denote polyisoprene, polystyrene, and poly(2‐vinylpyridine), and component homopolymers. Microphase‐separated structures of the solvent‐cast films were observed with transmission electron microscopy and small‐angle X‐ray scattering. For an ISP/S system, the lattice constant of the tricontinuous gyroid structure (G‐structure) increased with an increase in the volume fraction of S (?s) if the amount of added homopolymer was small, but it reached a certain limit, reflecting the fact that the midblock chain had a limit for chain stretching. For I/ISP/P blends, on the contrary, the lattice constant of the G‐structure continued increasing with decreasing ?s. This result shows that the I and P domains did not have a limit for chain stretching because the two end blocks had free ends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1135–1141, 2002  相似文献   

12.
The phase behavior of the binary blends of polystyrene-b-poly(L-lactide) chiral block copolymer (BCP*) and polystyrene homopolymer (HS) is found to be strongly dependent on the molecular weight (M(n)) of the HS. A helical phase is formed in the blends with low-M(n) HS due to an enhancement of helical steric hindrance.  相似文献   

13.
Summary The mixing state of amphiphilic di-block copolymers consisted of poly(ethylene oxide) and poly(methacrylate) having azobenzene moieties in the side chains p(EO)114pMA(Az)24 and poly(ethylene oxide) p(EO)114 was investigated from the viewpoints of isothermal crystallization and nano-scale ordered structure. The chemical potential, which required establishing the constant crystal growth rate, decreased with the p(EO) content up to 60%. The hexagonal packed cylinder structure was observed for the blends with the p(EO) content up to 60% and the lattice spacing of (100) and (110) planes increased with the p(EO) content up to 60%. The blends of amphiphilic p(EO)114pMA(Az)24 and p(EO)114 were miscible without in the p(EO) content below 60%.  相似文献   

14.
通过控制均聚物与共聚物共混过程中的相行为,能够得到许多性能优异的材料。本文从理论和实验两方面总结了影响均聚物/共聚物共混体系相容性和形态结构的因素,主要包括均聚物的分子量、浓度,共聚物的组成、结构、浓度,与均聚物相应的共聚物组分的分子量,共聚物分子内的相互作用,均聚物与共聚物分子间的相互作用等。  相似文献   

15.
解孝林 《高分子科学》2013,31(6):870-878
The miscibility of poly(vinyl chloride)/poly(n-butyl methacrylate) (PVC/PnBMA) blend and the interdiffusion kinetics of PVC/PnBMA laminates have been investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM), respectively. This blend exhibited a lower critical solution temperature behavior. Below 120℃, DSC results showed each blend with different PVC contents exhibited only a single glass transition temperature which increased with PVC content, indicating that PVC and PnBMA were miscible. After PVC/PnBMA laminates were annealed at different temperature for different time, a smooth cross-section across interface was prepared by ultramicrotoming. Combined with topography and phase images of tapping mode AFM, the relative concentration profile, interface width and the relationship between interface width and annealing time could be obtained. In a regime of rubbery/rubbery interdiffusion, the diffusion obeyed a typical Fickian Case-Ⅰ behavior where the interface width was proportional to the square root of annealing time. The mutual diffusion coefficient was in good agreement with that obtained from DSC and positron annihilation lifetime spectroscopy. However, in the regime of glassy/rubbery interdiffusion, the diffusion followed a typical Case-Ⅱ behavior where the interface width was proportional to annealing time. These results imply that AFM is a reliable and powerful tool for the investigation of polymer/polymer interdiffusion at a level of polymer chain size.  相似文献   

16.
Here, we report the morphology variation in a series of PS-b-PI-b-PS' asymmetric triblock copolymer and PS homopolymer (hPS) blends, where PS' and PS are polystyrene blocks with a molecular weight ratio of approximately 0.11 and PI is poly(isoprene). We find that adding a small amount of hPS results in significant order–order transition (OOT) boundary deflection toward higher PS volume fractions fPS, which is accompanied by morphology re-entry. For example, the neat triblock copolymer with a PS + PS' volume fraction of fPS = 0.38 exhibits a lamellar microphase; adding a small amount of hPS reverts the morphology into a hexagonal phase with PS cylinders, while further increasing the hPS fraction leads to normal OOTs from PS cylinders to lamellae, to PI cylinders and finally to spheres. The morphology variation reported here is significantly different from that reported in binary blends of diblock or symmetric triblock copolymer with homopolymer. While the domain features of the LAM structure can be correctly reproduced by self-consistent field theory (SCFT), the observed morphology re-entry is absent in the theoretical SCFT phase diagram. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 169–179  相似文献   

17.
Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.  相似文献   

18.
19.
《Supramolecular Science》1997,4(1-2):121-126
Conventional block copolymers consist of two long contiguous monomer sequences (‘blocks’) that can, in the same fashion as low-molar-mass surfactants, self-assemble into various microstructural elements (e.g., micelles at low copolymer concentrations) to minimize repulsive contacts in the presence of a parent homopolymer. In this work, we explore the existence of segment-specific interactions, as well as the possibility of tailoring these blend morphologies (and producing altogether new ones), with novel sequence-controlled block copolymers. These copolymers are comprised of at least one block that is a random segment composed of both constituent monomer species. Transmission electron microscopy is employed here to examine the bilayered membranes and channel structures that form in two different series of such copolymers in dilute copolymer/homopolymer blends.  相似文献   

20.
The crystallization, morphology, and crystalline structure of dilute solid solutions of tetrahydrofuran–methyl methacrylate diblock copolymer (PTHF-b-PMMA) in poly(ethylene oxide) (PEO) and PTHF have been studied with differential scanning calorimetry (DSC), X-ray, and optical microscopy. This study provides a new insight into the crystallization behavior of block copolymers. For the dilute PTHF-b-PMMA/PEO system containing only 2 to 7 wt % of PTHF content, crystallization of the PTHF micellar core was detected both on cooling and on heating. Compared the crystallization of the PTHF in the dilute solutions with that in the pure copolymer, it was found that the crystallizability of the PTHF micellar core in the solution is much greater than that of the dispersed PTHF microdomain in the pure copolymer. The stronger crystallizability in the solution was presumably due to a softened PMMA corona formed in the solution of the copolymer with PEO. However, the “soft” micelles formed in the solution (meaning that the glass transition temperatures (Tg) of the micelle is lower than the Tm of the matrix phase) showed almost no effects on the spherulitic morphology of the PEO component, compared with that of the pure PEO sample. In contrast, significant effects of the micelles with a “hard” PMMA core (meaning that the Tg of the core is higher than the Tm of the PTHF homopolymer) on the nucleation, crystalline structure, and spherulitic morphology were observed for the dilute PTHF-b-PMMA/PTHF system. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2961–2970, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号