首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jun Yang  Li Qi  Yi Chen  Huimin Ma 《中国化学》2012,30(8):1793-1796
In this work, a 3D mixer has been conceived based on the splitting and recombining mechanism with simple topology structure. This mixer can present excellent performance at extremely low Reynolds number, which is very important for the practical use. Further research exhibits that the mixing also can be realized via the chaotic advection that occurred at decreased aspect ratio of channel. Thus, the changeable mechanism of mixer shows potential of being used widely. Meanwhile, mixing process has been confirmed in a fabricated structure. The simulated flow patterns reappear in a scaled‐up mixer and full mixing can be achieved in 8 mm channel length at varied flow rate. Due to the high efficiency and easy fabrication, this 3D mixer possesses great prospect for a large number of microfluidic systems.  相似文献   

2.
With the growing interest in quantum dots (QDs), many applications are emerging recently. In particular, the display industry has shown widespread interest in using QDs as the next generation colorants. One application is to replace conventional color filters with QD‐based color conversion films to significantly improve color purity and luminous efficiency. However, QD blending which is capable of photolithographic patterning is a very challenging problem due to its low dispersion property and aggregations in polar medias. Herein, we report a photo‐patternable QD dispersion that can produce fine patterns through a photolithography process. First, the QDs dispersed in a nonpolar solvent, for example, chloroform or hexane, were separated and dried to obtain a QD powder. And then, the dispersion characteristics of the QD powders were investigated after mixing commercial dispersants and UV curable oligomers. Furthermore, the QD dispersion was investigated up to 30 wt.% of QDs by mixing with various commercial additives. We have studied the optical property changes of QDs during the photocuring process and the heating process prior to actual application. And, we have studied the surface characteristics of the fine QDs patterns after patterning process. As a result, it was confirmed that QDs are able to be well dispersed up to 30 wt.%.  相似文献   

3.
流动注射分光光度法测定砷的研究   总被引:8,自引:0,他引:8  
刘国权  王春旭 《分析化学》1992,20(7):810-812
本文采用自行设计制造的氢化物发生及吸收装置,将流动注射技术同氢化物发生分光光度法结合在一起,设计了一种不使用载气的流动注射分析系统并对该系统的测定条件进行了实验研究,实验用HNO_3-AgNO_3-聚乙烯醇-乙醇混合液作吸收液,结果证明该系统具有操作简便,成本低廉,分析速度快(30次/小时),灵敏度高,重现性好及线性范围可调的优点。  相似文献   

4.
Dispersive mixing of immiscible polymer blends as well as polymer systems containing solids is achieved in compounding equipment at two stages of the system's processing experience: first, while one or more of the polymer components are melting, and second, after all polymer components have melted. That is, the first mode of dispersive mixing occurs during the melting mechanism of “dissipative mix melting” (Ref. 1), while the second is melt-melt mixing. During the compounding of a given blend system, there are a number of processing parameters that can be changed in order to improve mixing. These range from machine operating variables to the addition of processing aids. If such processing changes fail to produce the desired morphology, the most common change to consider is the screw geometry. This, in practice involves a trial and error procedure, or the use of an existing database built from prior experience. The role which the thermomechanical and rheological properties of the blend component play in dissipative mix melting and melt-melt mixing has not yet been well understood. The reason for this is that although most blend systems have components which are strongly non-Newtonian and strongly viscoelastic, the thinking and rules of thumb for mixing such materials has been heavily influenced by the analysis of G. I. Taylor (Ref. 2), who in 1932 addressed the phenomenon of the dispersion of a single Newtonian droplet by a Newtonian matrix flowing in laminar shear flow. This paper addresses the strong role that the rheology of blend components, under processing conditions, play in laminar dispersive mixing of polymer blends. From a practical point of view, if the dispersion mechanisms and rates of dispersion depend on the component rheology, then such knowledge can lead us to the selection of advantageous mixing element designs and processing conditions. The experimental results were obtained in dispersive mixing carried out in devices developed in the Polymer Mixing Study (Ref. 3). Such model devices include the Couette Flow Intensive Mixer (CIM) (Ref. 4), where a constant shear stress is applied on the blend components and the Twin Screw Mixing Element Evaluator (TSMEE) (Ref. 5), where the mixing flows are those encountered in actual mixing/compounding operations. The TSMEE will be described in the body of this paper together with its on- and off-line morphology determination capabilities and its in-line rheology sensor. The low-density polyethylene (LDPE) and polystyrene (PS) polymers studied were selected because they cover a wide spectrum of rheological properties.  相似文献   

5.
The objective of this study is a comparative analysis of single and two-membrane reactor performances for isothermal reversible gas phase reaction. The effects of flow patterns (ideal mixing, cocurrent and countercurrent plug flow) and the presence of inert components were investigated. It is shown by simulation that for the pure reactant feed in absence of inerts, the performance of a two-membrane reactor is not significantly affected by the flow patterns, providing the pressure ratio is kept close to zero. Concerning the conversion efficiency in the case when the reactant is the slowest permeating component, the advantage of a two-membrane reactor is evident, it being least significant for countercurrent plug flow. In the presence of inerts in the separation zone, the advantage of a two-membrane reactor is maintained, while it is diminished by increasing inert flow rate in the reaction zone.  相似文献   

6.
This paper describes the experimental results of rapid mixing studies for a high temperature, entrained flow process (with flow time scales of a few milliseconds) where very rapid mixing and particle heating is required. To study the effect of mixing, experiments were conducted in a hot (about 2600 K) reacting entrained flow coal pyrolysis system using several coal and steam injector geometries designed to achieve uniform dispersion of coal particles in the hot background gases. These tests were conducted in the Avco Research Laboratory's high-throughput, two-stage, entrained flow reactor facility. To visually observe the mixing and solids dispersion patterns, a cold flow (room temperature) analog was developed by matching several dimensionless hydrodynamic groups with the hot reacting gasifier system. Experiments in the cold flow analog were carried out in a glass apparatus using air to simulate the main flow and using spherical glass beads carried by nitrogen to simulate the coal feed. Photographic techniques were used to study the mixing and spatial distribution of the particles. The results from the cold flow tests and the coal carbon conversions from hot flow runs indicate that the improvement in mixing results in higher pyrolysis yields that are no longer limited by gross, time-averaged mixing behavior but rather by chemical kinetics.  相似文献   

7.
The process of formation of nanoparticles obtained by mixing two micellized, aqueous solutions has been simulated using the Monte Carlo technique. The model includes the phenomena of finite reaction, nucleation, and growth via intermicellar exchange. This exploratory study examines the characteristic particle size distributions (PSDs) that result from using combinations of different initial reactant distributions (Poissonian and geometric) and different types of intermicellar exchange protocols (random, cooperative, and binomial). It is observed that the PSDs obtained using an initial Poissonian distribution of reactants and random exchange rules are similar to reported experimental results for CdS nanoparticles. The effect of exchange efficiency and reaction rate has also been studied. It is seen that a high exchange efficiency leads to relatively larger particle sizes. Also, a slow reaction rate has been shown to lead to the formation of larger nanoparticles.  相似文献   

8.
YSZ中温燃料电池的稳态模拟   总被引:1,自引:0,他引:1  
林子敬  顾晔  张晓华 《电化学》2002,8(4):445-451
依据同时考虑电化学及热平衡耦合的二维模拟软件 ,计算了薄膜钇稳氧化锆 (YSZ)中温燃料电池在不同工作条件下的稳态特性 .通过电流~电压关系参数进行自拟合实验 ,格点选取由平衡收敛性和计算效率而得 ,研究了不同连接体、气流流向设计等工作条件下的温度场 ,给出了不同工作温度下输出功率及电池效率与工作电压的关系 .对温度场的分析表明 :电池板内最高温度及最大温差以并流为最小 ,交叉流为最大 ,并流是最好的气流流向设计 .与以陶瓷材料作连接体相比 ,使用金属连接体能显著减小热应力和电池板内最高温度 ,受益最大的是交叉流 ,其最高温度及最大温差均小于陶瓷连接体的并流设计 .不同的气流流向对于输出功率及电池效率影响很小 ,对并流和金属连接体组合 ,给出了工程设计的燃料分布、电流密度、Nernst势及温度梯度在典型工作条件下的情形  相似文献   

9.
屈乙行  崔敏  张聪  李冲  李鹏  任聚杰 《电化学》2021,27(5):586-592
国内工厂生产过硫酸铵大多采用工艺简单且产品纯度高的电解法,但是电解法在生产过程中存在能耗过高的问题。这一问题限制了过硫酸铵在许多领域的进一步发展。针对这一现象,对硫酸铵电解生成过硫酸铵的设备及工艺进行设计和研究,以期达到降低能耗的目的。实验基于零极距和离子交换膜电解槽的设计,研究了加酸量、抑制剂用量、出入口温度和电解液浓度等因素对电解效率的影响。结果表明,在电解液中加酸并且在阳极液中添加抑制剂对提高电流效率和降低槽电压具有很大的影响,在最优条件下电流效率可达到98%,生产过程能耗显著降低。另外,电解槽还具有连续性生产、占地面积小的优势,进一步解决了厂家所面临的生产成本过高的问题。  相似文献   

10.
Mathematical assessment of homogenisation progress of the granular material mixing process is presented. The mixing process was realised using a vessel in the form of two partly penetrating horizontal cylinders equipped with two multi-ribbon agitators. The experimental system consisted of three sets of particles of different colour. Random states of the mixed granular material were characterised by the sampling procedure at different moments of the mixing process. Informational entropy as well as the flow of quantum of information were applied to describe the progress of the homogenisation process. Analysis of this process was based on experimental investigations in the form of informational entropy patterns and described by means of the average informational entropy or the quantum of information. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

11.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

12.
Wang Y  Lin Q  Mukherjee T 《Lab on a chip》2005,5(8):877-887
This paper presents a model for the efficient and accurate simulations of laminar diffusion-based complex electrokinetic passive micromixers by representing them as a system of mixing elements of relatively simple geometry. Parameterized and analytical models for such elements are obtained, which hold for general sample concentration profiles and arbitrary flow ratios at the element inlet. A lumped-parameter and system-level model is constructed for a complex micromixer, in which the constituent mixing elements are represented by element models, in such a way that an appropriate set of parameters are continuous at the interface between each pair of adjacent elements. The system-level model, which simultaneously computes electric circuitry and sample concentration distributions in the entire micromixer, agrees with numerical and experimental results, and offers orders-of-magnitude improvements in computational efficiency over full numerical simulations. The efficiency and usefulness of the model is demonstrated by exploring a number of laminar diffusion based mixers and mixing networks that occur in practice.  相似文献   

13.
ABSTRACT

Soy oil-in-water emulsions (30% oil) with soy lecithin as emulsifier (4%) were prepared using a stirred vessel under batch conditions. The effects of 7 process variables (impeller-to-tank diameter ratio, temperature, agitation speed, mode of cooling and also pre-emulsification mixing rate, pre-emulsification mixing time and resting time before emulsification) were studied according to a fractional factorial design 27?3. The droplet size distributions of the emulsions were measured and the kinetics of destabilization were monitored during 3 months. In the experimental domain, the mixing rate was found to be the most significant variable affecting both the size distribution and the stability. It was followed by the temperature, and the impeller-to-tank ratio depending on the Sauter mean diameter or the half-life time of the emulsions. Interaction of the temperature with the agitation speed and with the impeller-to-tank diameter ratio was also observed.  相似文献   

14.
The characteristics of engineering plastics used in the preparation of electrical and electronic equipment were studied. More specifically, their thermal response was recorded by DSC experiments, the rheological properties were investigated via MFI tests and the mechanical properties were evaluated with tensile tests. The aim was to establish a procedure for recycling the same engineering plastics deriving from waste of electrical and electronic equipment (WEEE), which offers the additional advantage of using the as-received waste stream as a recyclable mixture, i.e. without sorting and classification of its components.The experimental results showed that blends of PC with ABS or ABS/HIPS can be prepared by direct mixing and this, would allow easy handling of the engineering plastics coming from WEEE, i.e. blending without the need of sorting. These mixtures can be easily processed and display acceptable mechanical properties with reasonable cost. Therefore, the processing characteristics and properties of the systems studied in this work could be the key for the design of an interesting approach for handling solid plastic waste from electrical and electronic devices.  相似文献   

15.
Summary: In single screw plasticizing technology dispersive mixing elements, i.e., axial and spiral Maddock shear heads, are often used to improve the melt quality. Mathematical models are necessary to efficiently design the mixing section. An analytical model for the design of Maddock mixers is presented in this work. In addition, a CFD-software package is employed to determine the flow and pressure field for different geometries and processing conditions. For the design and process analysis of fluted dispersive mixers the validity and potential of simplified analytical solutions are compared to more versatile and detailed CFD-simulations.  相似文献   

16.
Effect of mixing and processing conditions at T‐die extrusion on the structure and mechanical properties is studied for isotactic polypropylene (PP) containing a small amount of β‐form nucleating agent, N,N′‐dicyclohexyl‐2,6‐naphthalenedicarboxamide. It is found that trigonal β crystals are predominantly formed in the extruded samples containing the nucleating agent irrespective of the mixing and processing conditions, leading to the marked mechanical toughness. On the contrary, the molecular orientation is significantly affected by the mixing and processing conditions. In particular, it should be noted that PP molecules in the extruded sheet which was mixed at high temperature (260 °C) and extruded at low temperature (200 °C) orient perpendicular to the applied flow direction. As a result, the sheet shows anomalous mechanical anisotropy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 424–433, 2009  相似文献   

17.
Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.  相似文献   

18.
A novel fluid micromixer based on pneumatic perturbation and passive structures was developed. This micromixer facilitates integration and is applicable to fluid mixing over a wide range of flow rates. The microfluidic mixing device consists of an S-shaped structure with two mixing chambers and two barriers, and two pneumatic chambers designed over the S-shaped channel. The performance of the micromixer for fluids with wide variation of flow rates was significantly improved owing to the integration of the pneumatic mixing components with the passive mixing structures. The mixing mechanism of the passive mixing structures was explored by numerical simulation, and the influencing factors on the mixing efficiency were investigated. The results showed that when using a gas pressure of 0.26 MPa and a 100 m-thick polydimethylsiloxane (PDMS) pneumatic diaphragm, the mixing of fluids with flow rates ranging from 1 to 650 L/min was achieved with a pumping frequency of 50 Hz. Fast synthesis of CdS quantum dots was realized using this device. Smaller particles were obtained, and the size distribution was greatly improved compared with those obtained using conventional methods.  相似文献   

19.
Polymer modification with high energy electrons is well-established in polymer industry and used for degradation, cross-linking, grafting, curing, and polymerization. These applications use local and temporal precise input of energy in order to generate excited atoms or molecules as well as ions for subsequent molecule changes via radical induced chemical reactions. Reactive electron beam (EB) processing combines melt mixing process and chemical reaction simultaneously. For this purpose, a 1.5 MeV electron accelerator was directly coupled to an internal mixer in order to induce chemical reactions by energy input via high energy electrons under dynamic conditions of melt mixing of different polymer compounds. In the present study, reactive EB processing was used for the development of a flame retardant polyethylene composite as well as Thermoplastic Vulcanizate. The influence of absorbed dose as well as electron energy and electron treatment time was studied. Increased values of both tensile strength and elongation at break of polymer compounds indicated in-situ compatibilization upon reactive EB processing.  相似文献   

20.
The main dependence for determining the energy-power parameters of processing the compositions, whose behavior under load is described by a power rheological law in the operation gap of mixers with oval rotors. In the proposed method of calculating the power of the mixer drive motor an attempt was made to account for movement of a treated material not only in circular but also in the axial direction of the mixing chamber. These dependences for determining the pressure and power supplied to the rotors for rotation thereof may be recommended for engineering calculations of mixing equipment for plastics and rubber mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号