首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography.  相似文献   

2.
A novel high performance liquid chromatographic method for separation of synthetic polymers has been tested. It involves combination of the enthalpic and entropic retention mechanisms, resulting in increased selectivity of separation within a specific molar mass range. In this present case, the enthalpic retention mechanism is adsorption of macromolecules on a bare silica gel column packing. Under critical conditions of enthalpic interactions, homopolymers are known to elute irrespective of their molar mass. However, in the vicinity of critical conditions, a situation can be identified when retention volumes (V(R)) rapidly decrease with increasing molar mass. Typically, this happens for polymer species close to or above their exclusion limit observed with the same column in the absence of enthalpic interactions between macromolecules and packing, that is near "ideal SEC" conditions. The dependence of polymer retention volume on molar mass closely resembles size exclusion conditions. However, the witnessed rate of change in V(R )with polymer molar mass is more pronounced, thus indicating increased selectivity of separation. This situation not only offers the benefit of more selective separation according to molar mass but efficient discrimination of macromolecules possessing different nature and interactivity with the column packing can be accomplished as well.  相似文献   

3.
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.  相似文献   

4.
Tetrahydrofuran-containing binary mobile phases used for the thin-layer chromatography study of poly(methyl methacrylates) are comprehensively investigated. The peculiarities of the transition from the adsorption regime to the exclusion regime through the conditions critical for PMMA are studied in a wide range of molecular masses at different macromolecule-to-pore size ratios. Binary phase compositions corresponding to the critical conditions are determined, and chromatographic results are compared with viscometry data. In the adsorption region near the critical conditions, the dependence of the retention parameter on the molar fraction of tetrahydrofuran in the mixtures is approximated by a linear function. The slope of this dependence is shown to grow with both the molecular mass of the polymer and the thermodynamic quality of the mixed solvent.  相似文献   

5.
Comprehensive two-dimensional liquid chromatography-size-exclusion chromatography (LC x SEC) was investigated as a tool for the characterization of functional poly(methyl methacrylate) (PMMA) polymers. Ultraviolet-absorbance and evaporative light-scattering detection (ELSD) were used. A simple method to quantify ELSD data is presented. Each data point from the ELSD chromatogram can be converted into a mass concentration using experimental calibration curves. The qualitative and quantitative information obtained on two representative samples is used to demonstrate the applicability of LC x SEC for determining the mutually dependent molar-mass distributions (MMD) and functionality-type distributions (FTD) of functional polymers. The influence of the molar mass on the retention behavior in LC was investigated using LC x SEC for hydroxyl-functional PMMA polymers. The critical conditions, at which retention is--by definition--independent of molar mass, were not exactly the same for PMMA series with different end-groups. Our observations are in close agreement with theoretical curves reported in the literature. However, for practical applications of LC x SEC it is not strictly necessary to work at the exact critical solvent composition. Near-critical conditions are often sufficient to determine the mutually dependent distributions (MMD and FTD) of functional polymers.  相似文献   

6.
A novel data interpretation method is presented which is derived from weighted least squares analysis. Given the steep dependence of the Rayleigh factor on concentration, a Zimm‐plot based regression of weight average molar mass and the RMS radius of gyration is strongly influenced by data over an optimum concentration range, which can be quite narrow for some polymer‐solvent combinations. The “one‐concentration method” exploits this sensibility to improve the precision in molar mass and radius of gyration measurements to ±4%. The theoretical prediction of the optimum concentration is included. The one‐concentration method is applied to polymers in organic solvents as well as to water‐soluble polyelectrolytes.  相似文献   

7.
Summary Thermal field-flow fractionation separates polymers with high selectivity according to their Soret coefficient,S τ, hence, according to their molar mass, and therefore consitutes an efficeint physicochemical tool for the determination of the Soret coefficient of a given polymer in the carrier liquid from its retention time. However, the polymer concentration in the sample influences the retention time and, hence, the value ofS τ derived from it. An experimental study of the influence of sample concentration on retention,S τ, and peak shape was performed for the polystyrene-decalin system over a relatively large temperature domain and for various molar masses. It is found that the retention time and the value ofS τ increase with increasing sample concentration, the more so as the cold wall temperature is lower. This appears to be in contradiction with the general non-equilibrium thermodynamic expression derived for polymer-solvent systems with positive second virial coefficients, such as the present system over the temperature range investigated. There seems to be a temperature for which the dependence ofS τ on sample concentration vanishes. This temperature is about 375 K for the polystyrene-decalin system. As the sample concentration increases, the peak barycentre and the standard deviation increases. As the peaks are fronting, the skewness is negative and becomes more negative as the sample concentration increases. The peak skewness appears to be a good indicator of the onset of sample concentration effects. The threshold concentration, for which these effects begin to become significant, decreases with increasing molar mass.  相似文献   

8.
Results on polycondensation of poly(1.4 benzamide) (PBA) and 2.5.DCIPDAcoTPA in solutions of poly(vinylpyrrolidone) (PVP) will be presented. For polycondensation, the method of OGATA, using triphenylphosphine and hexachloroethane, and the low-temperature solution polycondensation of dicarboxylic acid dichlorides and diamines, were applied. It is shown that the molar mass of PBA depends strongly on the PVP:PBA ratio. To explain this dependence, one has to take into account the phase behavior of the ternary rigid rod polymer/flexible coil polymer/solvent system and the influence of the matrix polymer. An enhancement of the molar mass of the PBA produced can be observed when the PVP:PBA is high enough to prevent an association of the PBA, i.e. when one stays in the isotropic one-phase area of the phase diagram. Under these circumstances, it is possible to obtain one-phase systems in nonsolvents for the aramides.  相似文献   

9.
The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of narrow distributed polystyrene standards as reference materials with known structure by AT/HT-SEC and AT/HT-AF4. Low density polyethylenes as well as polypropylene and polybutadiene, containing high degrees of branching and high molar masses, have been analyzed with both methods. As in SEC the relationship between the radius of gyration (R(g)) or the molar mass and the elution volume is curved up towards high elution volumes, a correct calculation of the MMD and the molar mass average or branching ratio is not possible using the data from the SEC measurements. In contrast to SEC, AF4 allows the precise determination of the MMD, the molar mass averages as well as the degree of branching because the molar mass vs. elution volume curve and the conformation plot is not falsified in this technique. In addition, higher molar masses can be detected using HT-AF4 due to the absence of significant shear degradation in the channel. As a result the average molar masses obtained from AF4 are higher compared to SEC. The analysis time in AF4 is comparable to that of SEC but the adjustable cross-flow program allows the user to influence the separation efficiency which is not possible in SEC without a costly change of the whole column combination.  相似文献   

10.
Gradient polymer elution chromatography (GPEC) is rapidly becoming the analytical method of choice for determining the chemical composition distribution (CCD) of synthetic polymers. GPEC can be performed in traditional (strict precipitation-redissolution mechanism) or interactive (normal- and reversed-phase) modes, and results may be qualitative, semi-quantitative, or fully quantitative. Quantitative approaches have thus far relied on colligative or end group techniques for determining the values of standards used in constructing the GPEC calibration curve. While the values obtained from said methods are number-averages, they are assigned to the peak apexes of the standards (i.e. assigned as peak averages). This creates a determinate error in the quantitation, referred to herein as "moment bias". In this paper we determine moment bias for a series of styrene-acrylonitrile (SAN) copolymers, where the distribution and averages of the AN% have been measured using normal-phase (NP) GPEC. We also correct for the effect via statistical treatment of the chromatographic data.  相似文献   

11.
The viscosimetric behaviour of poly(ω-norbornenyl polystyrene) polymacromonomers is studied in dilute solutions as a function of the degree of polymerisation and the branch molar mass. We emphasise the fact that the exact molar mass characterisation using scattering techniques is illusory, owing to a strong intermolecular contribution in the scattering distribution, as evidenced by neutron scattering. Two characteristic behaviours are evidenced in the viscosimetric dependence versus molar mass of the polymacromonomer and are attributed to their global conformation when they could be considered as spherically or cylindrically symmetric. Moreover for the branch of higher molar mass used an unexplained deviation appears between the two behaviours. Received: 6 May 2000 Accepted: 6 September 2000  相似文献   

12.
Many liquid chromatographic (LC) separations of macromolecules are influenced or directly based on adsorption of solutes on column packing. In the case of well known size exclusion chromatography (SEC), adsorption effects are usually unwanted and therefore suppressed. Still they appear in many SEC systems and may badly affect precision of results obtained. In other LC methods applicable to high polymers, adsorption is deliberately combined with exclusion. The aim is to discriminate complex polymer systems which exhibit more than one single distribution of their molecular characteristics. The main goals of such combinations include either a controlled increase or a full suppression of separation selectivity according to one molecular characteristics. Most important so far known exclusion-adsorption compensation methods allowing to suppress dependence of LC retention volumes on polymer molar mass are reviewed. The discussion is accomplished with a presentation of newly developed full adsorption - desorption (FAD) method which can be combined with various LC procedures. A very useful combination represents the on-line FAD/SEC procedure which enables also to study adsorption and desorption phenomena in the systems solid surface - solvent - macromolecules.  相似文献   

13.
The determination of absolute molar mass averages (MMA) and molar mass distribution (MMD) of the fourth generation hyperbranched polyester Boltorn H40 (Perstorp Specialty Chemicals AB), synthesized from 2,2-bis(methylol)propionic acid (bis-MPA) as the AB2 monomer and ethoxylated pentaerythritol as the B4 core molecule was studied in dependence on the type of solvent, preparation procedure and solution concentration. Due to a large number of polar hydroxyl groups, ester, and also some residual carboxyl groups, a very stable H-bond network is formed at room temperature, that can-not be completely disrupted by dissolving the sample in solvents such as tetrahydrofuran (THF), N,N-dimethylacetamide (DMAc), a mixture of THF and methanol (9:1, v/v), and a solution of 0.7% LiBr in DMAc. The H-bonds between the polar groups break down completely and the dissolution of Boltorn H40 on the molecular level is achieved only when the sample is thermally pretreated at a minimum 140 C for at least 20 min prior to dissolution in solvents THF/methanol or LiBr/DMAc. Thus, determined MMA and molar mass distribution (MMD) of Boltorn H40 are independent on the kind of the solvent and solution concentration.  相似文献   

14.
When a solvent drop evaporates from a polymer surface, it leaves behind a characteristic structure, typically a crater. We deposited toluene drops with a microsyringe onto planar polystyrene (PS) surfaces and analyzed the surface topography after drying. For low molar mass PS (Mw = 20.9-24.3 kDa) dotlike protrusions with a ridge at the periphery formed on the polymer surface. With increasing molar mass the central region decreased in height. At Mw = 29.6-643 kDa a craterlike structure with a depression in the center and a ridge was observed. At even higher molar mass, irregular structures without rotational symmetry occurred. We explain the observed dependence on the molar mass with a different degree of entanglement, leading to different dissolution rates and different diffusion constants.  相似文献   

15.
Polyhydroxyalkanoates are biodegradable polyesters produced by bacteria that can have a wide distribution in molecular weight, composition of monomers, and functionalities. This large distribution often leads to unpredictable physical properties making commercial applications challenging. To improve polymer homogeneity and obtain samples with a clear set of physical characteristics, poly-3-hydroxyvalerate-co-3-hydroxybutyrate copolymers were fractionated using gradient polymer elution chromatography (GPEC) as opposed to extensively used bulk fractionation. Separation was achieved using a reversed-phase column with chloroform and ethanol as the solvent and non-solvent, respectively. A separation was also conducted on a normal-phase column to compare elution patterns between columns of varied polarity. The fractions were analyzed using Size Exclusion Chromatography (SEC) and NMR to determine the percentage of 3-hydroxyvalerate in the copolymer as well as its molecular weight. It was found that as the percentage of "good" solvent was increased in the mobile phase, the polymers eluted with decreasing percentage of 3-hydroxyvalerate and increasing molecular weight which indicates the importance of precipitation/redissolution in the separation. The elution pattern of the polymer remained unchanged when using both a normal- and reversed-phase column which also illustrates the dominance of precipitation/redissolution in GPEC of polyhydroxyalkanoates. As such, GPEC is shown to be an excellent choice to provide polyhydroxyalkanoate samples with a narrower distribution in composition than the original bulk copolymer sample.  相似文献   

16.
A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data.  相似文献   

17.
The high performance liquid chromatography of polymers under limiting conditions of adsorption (LC LCA) separates macromolecules, either according to their chemical structure or physical architecture, while molar mass effect is suppressed. A polymer sample is injected into an adsorption-active column flushed with an adsorption promoting eluent. The sample solvent is a strong solvent which prevents sample adsorption. As a result, macromolecules of sample elute within the zone of their original solvent to be discriminated from other, non-adsorbing polymer species, which elute in the exclusion mode. LC LCA sample recovery has been studied in detail for poly (methyl methacrylate)s using a bare silica gel column and an eluent comprised toluene (adsorli) and tetrahydrofuran (desorli). Sample solvent was tetrahydrofuran. It was found that a large part of injected sample may be fully retained within the LC LCA columns. The amount of retained polymer increases with decreasing packing pore size and with higher sample molar masses and, likely, also with the column diameter. The extent of full retention of sample does not depend of sample volume. An additional portion of the injected desorli sample solvent (a tandem injection) does not fully eliminate full retention of the sample fraction and the reduced recovery associated with it. The injected sample is retained along the entire LC LCA column. The reduced sample recovery restricts applicability of many LC LCA systems to oligomers and to discrimination of the non-adsorbing minor macromolecular components of complex polymer mixtures from the adsorbing major component(s). The full retention of sample molecules within columns may also complicate the application of other liquid chromatographic methods, which combine entropic and enthalpic retention mechanisms for separation of macromolecules.  相似文献   

18.
The experimental and computational methods to acquire the data on the relationship between free molecules and molecules involved in various heteroassociates (HA) in the HF—organic solvent binary liquid system (BLS) were developed and applied to the series of HF solutions in acetone. The first method is appropriate at the component molar ratios from 0 : 1 to 6 : 1 under the condition that the IR spectrum of the solvent molecule contains a band, whose frequency and intensity can be measured as the molecule passes from the free state to the composition of all HA formed in the BLS. The second method is based on the consideration of the balance between free molecules and molecules involved in HA of the solvent and HF. This method requires the knowledge of molar ratios of the components of the solution at which each HA appears in the solution. It is shown that in an HF-Me2CO solution the main part of the molecules is involved in the HA composition starting from the HF content ~0.25 molar fraction, whereas 90–100% molecules are associated at an HF content of ~0.50–0.93 molar fraction.  相似文献   

19.
Gradient-elution liquid chromatography (GELC) is a powerful tool for the characterization of synthetic polymers. However, gradient-elution chromatograms often suffer from breakthrough phenomena. Breakthrough can be averted by using a sample solvent as weak as the mobile phase. However, this approach is only applicable to polymers for which a sufficiently strong solvent exists which is at the same time a weak eluent. Finding such a solvent for a given polymer can be laborious or may even be impossible. Besides, when working with comprehensive two-dimensional LC the effluent of the first dimension is the injection solvent of the second dimension. In this case, it is not possible to avoid breakthrough by adjusting the eluent strength of the second-dimension injection solvent. Therefore, another strategy to avert breakthrough has to be implemented. In this work, we successfully avoided breakthrough in GELC by mixing the mobile phase not before, but after the autosampler. This was demonstrated measuring a blend of poly(methyl methacrylate) standards with different molecular-weights as model mixture with comprehensive two-dimensional GELC × size-exclusion chromatography. The strategy is thought to be applicable to all substances with a sufficiently strong dependence of retention on mobile-phase composition. This typically applies to large molecules (synthetic and natural polymers) and allows efficient refocusing. Unretained and barely retained substances are not refocused and therefore suffer in the proposed setup from peak broadening.  相似文献   

20.
The concept and some first results of a method are described for evaporating large volumes of solvent in a relatively short pre-column (retention gap) in such a way that solvent trapping retains volatile components in the inlet up to completion of solvent evaporation. The method was developed for transferring large volumes (easily exceeding 1 ml) of HPLC eluent to GC when using on-line coupled HPLC-GC, but is equally suited for injecting large sample volumes (at least some 50 μl) and could be particularly useful for introducing aqueous solutions. Concurrent solvent evaporation allows introduction of very large volumes of liquid into GC. However, peaks eluted up to some 40–80° above the column temperature during introduction of the liquid are strongly broadened due to the absence of solvent trapping. On the other hand, previous retention gap techniques involving solvent trapping were not suited for transferring very large volumes of liquid into GC. Using a relatively high boiling co-solvent added to the sample or the HPLC eluent, advantages of concurrent solvent evaporation can be combined with solute reconcentration by solvent effects, allowing elution of sharp peaks starting at the column temperature during introduction of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号