首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the determination of aliphatic and aromatic amines in a variety of environmental samples including wastewater, river water, sea water and sediment samples. The method includes ion-pair extraction with bis-2-ethylhexylphosphate (BEHPA), derivatisation of compounds with isobutyl chloroformate (IBCF) and their GC-MS analysis. Aliphatic and aromatic amines were isolated from aqueous samples using BEHPA as ion-pair reagent and derivatised with IBCF for their chromatographic analysis. Solid-liquid extraction of aliphatic and aromatic amines in sediment samples were performed in Soxhlet apparatus with acidic MeOH and ion-pair extraction with BEHPA were carried out for the isolation of amines followed by derivatisation with IBCF. Aliphatic and aromatic amines were then analysed with GC-MS in both electron impact (EI) and positive and negative ion chemical ionisation (PNICI) mode as their isobutyloxycarbonyl (isoBOC) derivatives. The obtained recoveries ranged from 81.0 to 98.0% and the precision of this method, as indicated by the relative standard deviations (RSDs) was within the range of 0.5 and 4.3%. The detection limits obtained from calculations by using GC-MS results based on S/N = 3 were within the range from 0.07 to 0.50 ng/l.  相似文献   

2.
Ning  Shujing  You  Jinmao  Sun  Zhiwei  Zhang  Shijuan  Ji  Zhongyin 《Chromatographia》2012,75(19):1107-1116

A simple and sensitive method for the determination of free aliphatic amines using 10-phenyl-acridone-2-sulfonyl chloride (PASC) as a labeling reagent by high-performance liquid chromatography with fluorescence detection and online mass spectrometry identification (HPLC-FLD-MS) has been developed. Derivatization conditions including reagent concentration, buffer pH, reaction time and temperature were optimized. PASC reacted with aliphatic amines at 50 °C for 4 min in aqueous acetonitrile (ACN) in the presence of sodiumtetraborate–NaOH buffer (0.10 mol L−1, pH 9.0) to give high yields of PASC-amine derivatives. Derivatives exhibited intense fluorescence with an excitation maximum at λex 265 nm and an emission maximum at λem 418 nm. The separation of derivatives was performed by a reversed-phase Hypersil BDS C8 column in combination with a gradient elution. The identification of derivatives was carried out by online post-column mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion detection mode. Excellent linear responses were observed with the correlation coefficients of larger than 0.9997, and detection limits (at a signal-to-noise of 3:1) were from 3.0 to 24.3 fmol. Comparing with 10-ethyl-acridine-2-sulfonyl chloride (EASC), PASC exhibited more intense fluorescence and ultraviolet absorbance. The proposed method is sensitive and reproducible for the determination of aliphatic amines from water and soil samples.

  相似文献   

3.
In this study, a new capillary electrophoresis (CE) method is described originally for the sensitive and selective determination of short-chain aliphatic amines in biological samples. These amines were converted into their N-hydroxysuccinimidyl fluorescein-O-acetate (SIFA) derivatives and measured by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. The derivatization conditions and separation parameters for the aliphatic amines were optimized in detail. The SIFA-labeled amines were fully separated within 8.5 min using 25 mM pH 9.6 boric acid electrolyte containing 60 mM sodium dodecyl sulfate (SDS). The parameters of validation such as linearity of response, precision and detection limits were determined. The detection limits were obtained in the range from 0.02 to 0.1 nM, which was the lowest value reported by CE methods. The developed method was successfully employed to monitor aliphatic amines in serum and cells samples. After comparison of other CE methods using different fluorescent probes, the present method represents a powerful tool for the trace determination of aliphatic amines in complex biological samples.  相似文献   

4.
A procedure was developed for the gas-chromatographic determination of aliphatic amines C7–C20 with prederivatization by N-methyl-bis(trifluoroacetamide), in the concentration range of natural surface water, to 10?4-1 mg/L, and wastewater, to 10?3-1 mg/L. The conditions were optimized for the extraction preconcentration of aliphatic amines with toluene from natural surface water and wastewater. The detection limit for aliphatic amines at a signal-to-noise ratio of 3: 1 was 50 ng/L.  相似文献   

5.
A method was developed for the analysis of four aliphatic diamines by capillary zone electrophoresis using pre-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA)/CN and amperometric detection. The pre-column derivatization reaction conditions including the molar ratio of NDA to amines, the cyanide concentration, the pH value of derivatization buffer, and the reaction time, were investigated. The separation of four derivatives of aliphatic diamines has been optimized by capillary zone electrophoresis (CZE) using end-column amperometric detection with a carbon fiber microelectrode, at a constant potential of 0.7 V versus SCE. The optimum conditions for the separation were 10 mM Tris-H3PO4 (pH 4.0) for the running buffer solution, 15 kV for the separation voltage. The detection limits for diaminopropane, putrescine, cadaverine, diaminohexane were 6.7×10−8, 5.1×10−8, 1.9×10−7 and 3.8×10−7 M, respectively (S/N=3). The proposed method was applied to the determination of aliphatic diamines in a lake water sample by the standard addition method. The recovery of these amines in water was 89.9-107%.  相似文献   

6.
Gao PF  Zhang ZX  Guo XF  Wang H  Zhang HS 《Talanta》2011,84(4):157-1098
In this article, the simultaneous determination of primary and secondary aliphatic amines including dimethylamine (DMA), diethylamine and eleven primary aliphatic amines by high performance liquid chromatography (HPLC) with fluorescence detection has been achieved using a BODIPY-based fluorescent derivatization reagent, 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene (TMBB-Su). The derivatization reaction of TMBB-Su with aliphatic amines was optimized with orthogonal design experiment and the derivatization reaction proceeded at 15 °C for 25 min. The baseline separation of these derivatives was carried out on a C8 column with methanol-tetrahydrofuran-50 mM pH 6.50 HAc-NaAc buffer (55/5/40, v/v/v) as a mobile phase. Detected at the excitation and emission of 490 and 510 nm, respectively, the detection limits were obtained in the range of 0.01-0.04 nM (signal-to-noise ratio = 3). The proposed method has been applied to the determination of trace aliphatic amines in viscera samples from mice without complex pretreatment or enrichment method. The recoveries ranged from 95.1% to 106.8%, depending on the samples investigated.  相似文献   

7.
Cao LW  Wang H  Liu X  Zhang HS 《Talanta》2003,59(5):973-979
A new amino fluorescence probe, 2,6-dimethylquinoline-4-(N-succinimidyl) formate (DMQF-OSu) has been synthesized. Based on the selective reaction of DMQF-OSu with primary and secondary aliphatic amines to yield strong fluorescence, a new spectrofluorimetric method for the determination of total aliphatic amines has been developed. At λex/λem=324.4/416 nm, the linear calibration range was 6×10−8-6×10−6 mol l−1 with the detection limit (3σ) of 1.94×10−10 mol l−1 for the determination of aliphatic amines in weak basic media. The proposed method has been applied to the determination of aliphatic amines in tap water and lake water with the recoveries of 99-104%. Compared with the reported methods, the method presented here is rapid, simple, sensitive and feasible.  相似文献   

8.
6-Oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl)fluorescein (SAMF), a new fluorescein-based amine-reactive fluorescent probe was well designed, synthesized and used as a pre-column derivatizing reagent for the determination of aliphatic amines in HPLC. It exhibited relatively pH-independent fluorescence (pH 4-9) and excellent photostability. The derivatization was performed at room temperature in 6min. On a C18 column, the derivatives of SAMF with eight aliphatic amines were baseline separated in 28 min with a mobile phase of methanol-water (57:43, v/v) containing 10 mmol l(-1) pH 5.0, H3Cit3-NaOH buffer. With fluorescent detection at lambda(ex)/lambda(em) = 484/516 nm, the detection limit could reach 2-320 fmol (signal-to-noise = 3), which was equivalent to or better than the detection limits obtained from other analytical methods of aliphatic amines. The proposed method has been applied to the determination of the aliphatic amines in environmental and food samples such as lake water, red wine, white wine, and cheese with satisfying recoveries varying from 95 to 106%.  相似文献   

9.
Precolumn preconcentration and derivatization on solid sorbents (Bond Elut C18 solid-phase extraction cartridges) of low-molecular-mass aliphatic amines in water samples have been performed using dansyl chloride (Dns-Cl) as derivatization reagent. Conditions for analyte preconcentration and derivatization such as volume sample, reagent concentration, time, pH and temperature reaction were optimised. On the basis of these studies a rapid and sensitive method for screening of aliphatic amines in waters is presented. Up to volumes of 5 ml, samples are drawn through the sorbent, the analytes retained are dansylated at basic pH, at 100 degrees C for 10 min or 85 degrees C for 15 min. The derivatized analytes are desorbed with 0.5 ml of acetonitrile. Twenty microl of the collected extracts are chromatographed in a Hypersyl ODS C18 column using an acetonitrile-imidazole (pH 7) gradient for elution. Seven amines and ammonium were separated within 9 min. The Dns derivatives were monitored at 333 nm with UV detection and at lambda(excitation) = 350 nm and lambda(emission) = 530 nm with fluorescence detection. The different signals are compared. Dynamic ranges from 10 to 250 microg/l and limits of detection at the microgram-per-litre level and relative standard deviations from 2 to 15% were obtained for all the amines. The total analysis time (sample treatment plus chromatography) was less than 25 min. The method was applied to determination and screening analysis of these analytes in real environmental water samples.  相似文献   

10.
A sensitive method for the determination of underivatized aliphatic amines based on cation exchange chromatography coupled with suppressed conductivity detection scheme and solid phase extraction (SPE) procedure has been developed. A surface modified styrene divinylbenzene polymeric sorbent, based on a reversed‐phase (RP) and strong cation exchange (SCX) mixed mode was used as an active material for the SPE of amines. The conductometric capabilities of several aliphatic mono‐ and polyamines, expressed in terms of molar sensitivity (nS/μM), were determined. The LODs, obtained without the SPE treatment, ranged between 20 and 65 nM for putrescine and 2‐butylamine, respectively. The resulting calibration plots for the aliphatic amines were generally linear over about three orders of magnitude, with correlation coefficients >0.98. The LODs of amines decreased generally by one factor when SPE procedure, using BaCl2/H2SO4 eluents, has been adopted. The proposed SPE procedure, seems to offer good results in terms of preconcentration, recoveries and cleanup of samples. The proposed methodology was successfully tested for the quantitative determination of some biogenic amines in beer and tuna.  相似文献   

11.
Precolumn derivatization of six short‐chain aliphatic amines by a near‐infrared dye, 1‐(ε‐succinimydyl‐hexanoate)‐1′‐methyl‐3,3,3′,3′‐tetramethyl‐indocarbocyanine‐5,5′‐ disulfonate potassium (MeCy5‐OSu), followed by MEKC–CE–LIF detection has been developed as a method for the determination of aliphatic amines in environmental water and food. Optimum derivatization was operated nicely in pH 9.0 borate buffer at 20°C for 30 min. Well separated peaks were observed with a pH 9.5 BGE containing 10 mmol L?1 phosphoric acid, 20 mmol L?1 SDS, and 7% methanol buffered with 1.0 mol L?1 NaOH. The separation procedure was rapidly achieved within 11 min and the matrix interferences could be effectively eliminated. A linear calibration graph was obtained for 5–200 nmol L?1 analytes with a correlation coefficient in the range 0.9933–0.9995 for amines. This method was successfully utilized to determine aliphatic amines in lake, sewage water, and red wine with recoveries ranging from 96.4 to 105% and the RSDs ranging from 0.9 to 2.9%. Near‐infrared, LIF‐detector‐compatible MeCy5‐OSu was proved suitable for the accurate, sensitive, and rapid separation and determination of aliphatic amines in water and food samples.  相似文献   

12.
 采用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-乙酸(BCAA)为柱前衍生化试剂,在Hypersil BDS-C18色谱柱上,通过梯度洗脱对12种游离脂肪胺进行了分离和在线质谱定性。以乙腈为溶剂,1-乙基-3-(3-二甲氨基丙基)环己碳二亚胺(EDAC)为缩合剂,在50 ℃条件下衍生反应15 min后获得稳定的荧光产物。激发波长和发射波长分别为333 nm和390 nm。采用大气压化学电离源(APCI)的正离子模式,实现了土壤和污水中脂肪胺的定性及其含量的测定。脂肪胺的线性相关系数大于0.9993,检测限为12~28 fmol。  相似文献   

13.
The objective of this paper is to provide information about solid phase extraction (SPE) as an alternative to liquid-liquid extraction of amines from several matrices. Different sorbents ranging from non-polar phases, such as C18 silica to more polar such as cyanopropylsilica (CN) have been tested for analysis of aliphatic amines as monoamines, diamines and polyamines. Phenylalkylamines such as amphetamine or methamphetamine and heterocyclic amines such as histamine or cephalosporins (which also contain a carboxylic group), have also been studied. The different steps involved in the extraction procedure have been tested (conditioning, retention, pre-concentration, washing and elution) in order to obtain extracts free of interferences and enough sensitivity. C18 silica (100 mg) was selected as optimal phase with recoveries nearly of 100%. The elution of more polar amines was performed in acidic conditions while less polar amines required organic solvents. Cephalosporin retention was performed in acid condition by using disk cartridges EM C18, which gave better selectivity. The optimised clean-up procedures have been discussed to the quantification of the corresponding amines in real samples (urine, water and beer). The accuracy and precision were outlined.  相似文献   

14.
The paper presents a new method based on simultaneous derivatization and air-assisted liquid–liquid microextraction (AALLME) for the extraction and preconcentration of some aliphatic amines prior to gas chromatography-flame ionization detection (GC-FID). Primary aliphatic amines are derivatized and extracted simultaneously by a fast reaction with butylchloroformate (derivatization agent/extraction solvent) under mild conditions. The mixture of butylchloroformate and aqueous sample solution is rapidly sucked into a 10-mL glass syringe and then is injected into a test tube with conical bottom and the procedure is repeated seven times. After centrifuging the resulted cloudy solution, the derivatized analytes in the sedimented phase are determined by GC-FID. The influence of main factors on the efficiency of derivatization/extraction procedure is studied. Under the optimal conditions, the enrichment factors (EFs) for aliphatic amines are obtained in the range of 248–360 and limits of detection (LODs) are between 0.30 and 2.6 μg L−1. The obtained extraction recoveries ranged from 50 to 72% and the relative standard deviation (RSD) was less than 4.8% for intra-day (n = 6) and inter-days (n = 4) precision. The method is successfully applied to determine some aliphatic amines in environmental water samples.  相似文献   

15.
Two new methods were developed for the analysis of aliphatic (n-propylamine, pentylamine, hexylamine, heptylamine, octylamine) and alicyclic (pyrrolidine, morpholine, piperidine, piperazine) amines in water samples after derivatization and liquid-liquid-extraction. The carbamate-derivatives formed were determined by GC/MS (trichloroethyl carbamates) as well as by HPLC/fluorescence detection (9-fluorenylmethyl carbamates) in a concentration range between 0.05 and 1.0 microg/l suitable for drinking water analysis. Applications to German rivers and sewage plants show that both new methods produce corresponding results in analysing aliphatic and alicyclic amines in surface waters as well as in waste water samples.  相似文献   

16.
A sensitive method has been developed for liquid chromatographic determination of short aliphatic amines in water samples. Analytes are preconcentrated and dansylated on solid sorbents (C18 solid-phase extraction cartridges). The dansyl derivatives are chromatographed and post-column mixed with peroxyoxalate (TCPO) and H2O2 in order to perform chemiluminescence detection. Optimal results have been obtained using a sample volume of 5 ml. The method has been applied to the quantification or screening of several aliphatic amines: methylamine, ethylamine, butylamine, diethylamine, pentylamine and hexylamine. The screening procedure has been developed including also polyamines (putrescine, cadaverine, spermidine and spermine). The results obtained by using chemiluminescence (CL) detection have been compared with other detection systems (fluorescence and UV). The sensitivity can increase from 3 to 75 times respect UV detection and from 2 to 10 times respect fluorescence detection depending on the amine. The detection limits achieved were between 0.15 and 0.9 microg/l.  相似文献   

17.
A novel method is firstly presented for field and rapid analysis of short-chain aliphatic amines in water as their pentafluorobenzaldehyde (PFBAY) derivative using solid-phase microextraction (SPME) and portable GC. In the proposed method, short-chain aliphatic amines in water rapidly reacted with PFBAY, and then were headspace extracted and concentrated by SPME. The formed amines derivatives were analyzed by portable GC. The SPME parameters of fiber selection, extraction temperature, extraction time, and stirring rate were studied. The method validations including LOD, recovery, precision, and linearity were studied. It was found that the proposed method required the whole analysis time 22 min, and provided low LOD of 1.2-4.6 ng/mL, good recovery of 91-106%, good precision of RSD value 3.5-9.3%, and linear range 20.0-500 ng/mL (r(2) >0.99). The obtained results demonstrated that the SPME-portable GC is a simple, rapid, and efficient method for the field analysis of short-chain aliphatic amines. Finally, the proposed method was further applied to the quantification of ethylamine, propylamine, and butylamine in environmental water.  相似文献   

18.
The effect of a carboxyl group beside nitrogen of aliphatic amines on the tris(2,2′-bipyridine)ruthenium(III), Ru(bpy)33+, chemiluminescent reaction was examined. It has been shown that a carboxylate anion promotes the chemiluminescent reaction at a lower pH and then the aliphatic amines with this substituent can be sensitively detected compared with corresponding aliphatic amines without this substituent. Based on this finding, preliminary studies on simultaneous determination of 4-hydroxyproline, N-methylglycine, N-methylalanine, proline, and pipecolic acid in human serum have been performed using isocratic reversed-phase ion-pair high-performance liquid chromatography (HPLC) with electrogenerated Ru(bpy)33+ chemiluminescent detection. The detection limits (signal-to-noise ratio of 3) with the proposed method were 3.0, 12, 2.7, 4.6, and 10 nM for 4-hydroxyproline, N-methylglycine, N-methylalanine, proline, and pipecolic acid, respectively.  相似文献   

19.
Two new methods were developed for the analysis of aliphatic (n-propylamine, pentylamine, hexylamine, heptylamine, octylamine) and alicyclic (pyrrolidine, morpholine, piperidine, piperazine) amines in water samples after derivatization and liquid-liquid-extraction. The carbamate-derivatives formed were determined by GC/MS (trichloroethyl carbamates) as well as by HPLC/fluorescence detection (9-fluorenylmethyl carbamates) in a concentration range between 0.05 and 1.0 g/l suitable for drinking water analysis. Applications to German rivers and sewage plants show that both new methods produce corresponding results in analysing aliphatic and alicyclic amines in surface waters as well as in waste water samples.  相似文献   

20.
Summary A simple and sensitive method has been developed for the liquid chromatographic determination of short-chain aliphatic amines in water. Analytes are retained in solid-phase extraction (SPE) cartridges, and then derivatized by drawing an aliquot of the fluorogeneic reagent 9-fluorenylmethyl chloroformate (FMOC) through the cartridges. After a certain reaction time the derivatives formed are desorbed with acetonitrile. The collected extracts are then chromatographed on a LiChrospher 100 RP18 125 mm×4 mm i.d., 5 μm, column using an acetonitrile-water gradient. The influence of experimental conditions (SPE material, volume of sample, concentration of FMOC, time of reaction and pH) has been investigated. Optimal results have been obtained with C18 SPE cartridges using a sample volume of 5.0 mL. For derivatization, 0.25 mL aliquots of 25 mM FMOC have been used, the reaction time being only 2 min. The method has been applied to the quantification of several aliphatic amines: methylamine, ethylamine, dimethylamine,n-butylamine,n-pentylamine andn-hexylamine. Under the proposed conditions the percentages of analytes retained plus derivatized were of about 54–107% compared to those obtained with direct solution derivatization. The method provided good reproducibility, linearity and accuracy within the 0.050–1.0 mg L−1 concentration range. The limits of detection were in the 0.25–5.0 μg L−1 range. The utility of the described approach has been tested by analysing tap water, river water and industrial waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号