首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用Monte-Carlo模拟方法对六边形、正方形和三角形晶格结构磁性薄膜的磁学特性及磁畴结构进行了模拟,结果表明,磁性薄膜的磁性特征及其磁相变温度和薄膜结构密切相关并存在临界膜厚,当薄膜厚度大于临界膜厚时薄膜磁性特征稳定.在低温区,不同结构磁性薄膜的磁滞回线均出现台阶现象,结果同相关实验一致.  相似文献   

2.
The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3–5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L10-phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process.  相似文献   

3.
The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50–700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.  相似文献   

4.
High-density magnetic antidot arrays have been fabricated by deposition of Fe20Ni80 thin films on self-assembled nanoporous alumina membranes (NAM) with high-order hexagonal symmetry. The magnetic properties induced by the size and the geometry configuration of the holes introduced in a Fe20Ni80 thin film are discussed based on hysteresis loops measured as a function of temperature. The precursor NAMs have pore diameters ranging between 35 and 95 nm (55 and 75 nm after the film deposition) and a lattice parameter of 105 nm. An enormous increase of coercitivity, as compared with the corresponding continuous films, was observed for temperatures between 2 and 300 K. This effect depends on the size and surface density of holes in the Fe20Ni80 antidot arrays. Rutherford backscattering spectrometry (RBS) measurements were performed in order to better clarify the magnetic material that was eventually deposited within the NAM pores.  相似文献   

5.
应用非平衡分子动力学方法进一步研究了平均温度为300K、厚度为2.715nm-43.44nm的单晶硅薄膜的法向热导率,模拟结果表明,薄膜热导率低于同温度下单晶硅的实验值,存在显著的尺寸效应,当膜厚度在20nm以下时,法向热导率随尺度减小而线性减小,当膜厚度大于20nm时法向热导率随尺度呈现二阶多项式变化。法向热导率的变化规律与面向热导率的变化规律类似,表明薄膜厚度和表面晶格结构对声子传热影响的复杂性。  相似文献   

6.
FePt/Ag films were deposited on thermally oxidized Si(100) substrates by magnetron sputtering at room temperature and then the as-deposited films were annealed at 500 °C. The microstructure and magnetic properties of the films have been investigated by X-ray diffraction and vibrating sample magnetometry. The results indicate that introduction of the Ag underlayer promotes an ordering transformation of the FePt phase due to thermal tensile stress between the Ag underlayer and the FePt film. The in-plane tensile stress induced by the Ag underlayer should stretch the horizontal lattice parameter of FePt; thus, it is helpful for the ordering transformation. With increasing Ag underlayer thickness, the ordering parameter and coercivity first increase and then decrease. When the Ag underlayer thickness is 12 nm, the ordering parameter and coercivity of the film reach the maximum values, respectively. The Ag underlayer thickness also affects the magnetization reversal mechanism.  相似文献   

7.
The anomalous Hall effect (AHE) in ferromagnetic materials is perhaps one of the oldest unresolved mysteries in physics. First observed in 1881, its mechanism is still a controversial topic today. The question remains whether AHE is caused by intrinsic (Berry phase and band structure) or extrinsic (defect scattering) effects or a combination of both. Here we present experimental observation in nickel thin films that seems to add to the mystery, but may in fact provide crucial clues for ultimately resolving the controversy. The key observation is that the Hall resistivity of nickel films is a strongly nonlinear function of the magnetization and displays clear hysteresis with respect to M. Specifically, at low temperatures, the anomalous Hall coefficient switches between two saturated values under the magnetic field with a narrow transition region, but with a strong hysteresis, in contrast to the slow saturation of the magnetization. The nonlinearity and the hysteresis become more apparent with decreasing temperature or film thickness. Despite the simplicity of the lattice and magnetic structure of nickel films, these results are outside our current understanding of AHE, whether using intrinsic or extrinsic mechanisms of AHE. It presents a challenge for these models, and may be used as a test of validity for both types of theories.  相似文献   

8.
ZnTe and ZnTe:Cr films were prepared on glass substrate by using thermal evaporation method. X-ray diffraction analysis revealed the presence of ZnCrTe phase. X-ray photoelectron spectroscopy was used to estimate the composition of as-prepared films. The valence state of Cr in ZnTe:Cr film is determined to be +2 by using electron spin resonance spectroscopy. Magnetic moment data as a function of magnetic field was recorded by using superconducting quantum interference device magnetometry at 300 K. The result showed a clear hysteresis loop with coercive field of 48 Oe. Magnetic domains were observed by using magnetic force microscopy and the average value of domain size was 3.7 nm.  相似文献   

9.
In this study, the influence of film thickness on the first-order martensite–austenite phase transformation of Ni–Mn–Sn ferromagnetic shape memory alloy thin films has been systematically investigated. Different thicknesses of the Ni–Mn–Sn films (from ~100 to 2,500 nm) were deposited by DC magnetron sputtering on Si (100) substrates at 550 °C. X-ray analysis reveals that all the films exhibit austenitic phase with the L21 cubic crystal structure at room temperature. The grain size and crystallization extent increase with the increase in film thickness, but the films with thickness above ~1,400 nm show structural deterioration due to the formation of MnSn2 and Ni3Sn4 precipitates. The improvement in the crystallinity of the film with thickness is attributed to the decrease in film–substrate interfacial strain resulting in preferred oriented growth of the films. Temperature-dependent magnetization measurements as well as electrical measurements demonstrate the complete absence of phase transformation for the film of thickness of ~120 nm. For thickness greater than 400 nm, film exhibits the structural transformation, and it occurs at higher temperature with better hysteresis as film thickness is increased up to ~1,400 nm, after which degradation of phase transformation phenomenon is observed. This degradation is attributed to the disorders present in the films at higher thicknesses. Film with thickness ~1,400 nm possesses the highest magnetization with the smallest thermal hysteresis among all the films and therefore best suited for the actuators based on first-order structural phase transformation. Nanoindentation measurements reveal that the higher values of hardness and elastic modulus of about 5.5 and 215.0 GPa obtained in film of 1,014 nm thickness can considerably improve the ductility of ferromagnetic shape memory alloys (FSMA) and their applicability for MEMS applications. The exchange bias phenomenon is also found to be present in the films of thickness 1014, 1412, and 2022 nm exhibiting prominent martensitic transformation. Film of thickness 2,022 nm exhibits maximum exchange bias of ~50 Oe and higher exchange bias blocking temperature of 70 K as compared to other films.  相似文献   

10.
《Current Applied Physics》2020,20(4):589-592
Spinel lithium ferrite LiFe5O8 (LFO) has attracted robust research interests due to their potential applications in isolators, circulators, and phase shifters. In this work, a series of LFO thin film with various thickness were fabricated on SrTiO3 (STO) single-crystalline substrates by pulsed laser deposition technology. We systematically investigated the influences of the thickness of LFO thin film on the crystal structure and magnetic properties. The in-plane lattice parameter a and in-plane lattice parameter c were modulated by controlling the thickness of LFO thin film, which was confirmed using reciprocal space mappings (RSMs) technology. Furthermore, the microwave magnetism of LFO thin film with various thickness were studied systematically by ferromagnetic resonance (FMR) measurement. Moreover, with increasing the thickness of LFO thin film from 50 to 180 nm, the difference of the ferromagnetic resonance field between easy- and hard-magnetization axis can be enhanced and reach to 330 Oe. These results illustrate that dynamic magnetic properties can be controlled by tuning the thickness of LFO thin film. Our work provides an effective method to tailor the lattice parameter and modify the magnetic properties of the LFO thin film and contributes to further design high-frequency functional device.  相似文献   

11.
The magnetic and magneto-optical properties of FeRh thin films epitaxially deposited onto MgO(1 0 0) substrates by RF sputter-deposition system have been investigated in conjunction with the structure. An intriguing virgin effect has been found in the MT curves of the as-deposited FeRh thin films, which is presumably interpreted in term of a change in structural phase when heating. Also, a (negative) maximum peak of Kerr rotation at around 3.8 eV has been observed when FeRh thin films are in ferromagnetic state. The polar Kerr rotation angle is found to increase at temperatures above 100 °C, which corresponds to the antiferromagnet (AF)–ferromagnet (FM) transition of FeRh thin films.  相似文献   

12.
The lattice parameters of epitaxial barium strontium titanate films with various thicknesses (from 6 to 960 nm) were measured as a function of temperature in the normal and tangential directions with respect to the film plane using x-ray diffraction. The films were grown through the layer-by-layer mechanism by rf cathode sputtering under elevated oxygen pressure. A critical film thickness (~ 50 nm) was found to exist, below and above which the films are subjected to compressive and tensile stresses, respectively. As the temperature varies from 780 to 100 K, the films undergo two diffuse structural phase transitions of the second order over the entire thickness range. The transitions in the films under tensile stresses are likely to be transformations from the paraelectric tetragonal to aa phase and then to r phase, whereas the transitions under compressive stresses are transformations from the tetragonal paraelectric to ferroelectric c phase and then, with further decreasing temperature, to r phase.  相似文献   

13.
刘志伟  路远  侯典心  邹崇文 《发光学报》2018,39(11):1604-1612
为了探究VO2薄膜受激光辐照的温度场分布,以及1 064 nm激光直接辐照100 s内至相变的激光功率密度阈值,并比较近红外和中红外波段透过率调制特性差异。首先基于COMSOL建立了薄膜受激光辐照的模型并进行了温度场仿真,然后分别测试了薄膜正反面被不同功率密度的1 064 nm激光辐照100 s内激光透过率随时间响应特性。实验中的VO2薄膜利用分子束外延法在Al2O3基底上制备得到。仿真结果表明,激光功率密度为25 W·mm-2时,50 nm厚薄膜在被辐照1 ms时间内即达到相变温度。经激光辐照实验发现:50 nm厚的VO2薄膜正反面受1 064 nm激光直接辐照100 s内至相变的功率密度阈值分别为4.1 W·mm-2和5.39 W·mm-2。30 nm厚VO2薄膜对1 064 nmn激光的透过率调制深度约为13%,对3 459 nm激光透过率调制深度约62%,说明VO2薄膜对近红外透过率调制特性不明显。  相似文献   

14.
In this work, the thickness effect of Fe52Co48 soft magnetic films with in-plane anisotropy on static and microwave magnetic properties was investigated. The hysteresis loop results indicated that the static in-plane uniaxial anisotropy field increased from almost 0-60 Oe with increasing film thickness from 100 to 540 nm and well-defined in-plane uniaxial magnetic anisotropy can be obtained as the thickness reached 540 nm or larger. Based on Landau-Lifshitz-Gilbert (LLG) equation, the microwave complex permeability spectra were analyzed and well fitted. The LLG curve-fitting results indicated that the initial permeability increased from 106 to 142 and the resonant frequency was shifted from 4.95 to 4.29 GHz as the film thickness was varied from 540 to 1500 nm. Moreover, it was found that there was a discrepancy between the static and the dynamically determined anisotropy field, which can be explained by introducing an additional effective isotropic ripple field. The decreased ripple field was suggested to result in a significant decrease of damping coefficient from 0.109 to 0.038.  相似文献   

15.
Pui-Wai Ma  S.L. Dudarev 《哲学杂志》2013,93(32):2921-2933
Finite-temperature magnetic properties of iron thin films are investigated by computer simulation over a broad range of temperatures up to the point of the ferromagnetic–paramagnetic phase transition. The coupled dynamics of atoms and magnetic moments is treated using the large-scale spin–lattice dynamics (SLD) algorithm. We investigate surface and bulk magnetic properties of iron, and how these properties vary as a function of temperature, film thickness and surface crystallography. We find that magnetization at surfaces is enhanced at low temperatures and suppressed at higher temperatures, in agreement with experimental observations. The effective Curie temperature of a film decreases as a function of thickness. Short-range magnetic order and non-vanishing spin–spin spatial correlations are found above the Curie temperature. The spin autocorrelation functions exhibit slower oscillations with longer decoherence times near the surface. We also find that the directional spin disorder has a significant effect on the surface strain.  相似文献   

16.
It is demonstrated that ultrafast generation of ferromagnetic order can be achieved by driving a material from an antiferromagnetic to a ferromagnetic state using femtosecond optical pulses. Experimental proof is provided for chemically ordered FeRh thin films. A subpicosecond onset of induced ferromagnetism is followed by a slower increase over a period of about 30 ps when FeRh is excited above a threshold fluence. Both experiment and theory provide evidence that the underlying phase transformation is accompanied, but not driven, by a lattice expansion. The mechanism for the observed ultrafast magnetic transformation is identified to be the strong ferromagnetic exchange mediated via Rh moments induced by Fe spin fluctuations.  相似文献   

17.
We have deposited CdTe films by laser-assisted epitaxy approach and investigated the influence of substrate and film thickness on the film properties. Grown on Si(001), GaAs(001), and quartz substrates; the CdTe films exhibit preferential orientation along the cubic CdTe(111) direction. When the films are thin (<500 nm), a blueshift of the band gap and splitting of valence bands were observed. These results are attributed to the existence of residual strains induced by mismatch of the film lattice constant with that of the substrate, and by their difference in thermal expansion coefficients. The bulk band-gap energy of 1.5 eV was achieved on the surface of thick CdTe films grown on Si(001) substrate, indicating that strain was almost completely relaxed in this case. Our results demonstrate that by a proper selection of substrate and film thickness it is possible to grow film semiconductors with band gap approaching those of bulk crystals.  相似文献   

18.
We report the results from a series of experiments in which ferromagnetic thin films were used as atom mirrors for laser-cooled rubidium atoms released from a magneto-optical trap. The thin films were made of cobalt and lanthanum calcium manganite (LCMO) with thicknesses between 20 and 300 nm. The magnetic domains in these thin films have a periodic structure where the spatial period is of the order of the thickness of the film, and the field decays exponentially above the film over a length scale comparable to the domain size. Thus, the neutral atoms reflect off these films from distances comparable to the thickness of the film, resulting in modification of the reflectivity due to the competition between the repulsive magnetic force and the attractive short-range forces such as van der Waals and Casimir forces. The smoothness of the atom mirror is also modified due to the proximity of the magnetic domains. The reflectivity is sensitive to the domain structure and size, which can be modified in LCMO by applying a modest external magnetic field. In this paper, we discuss the evaluation of the thin films as magnetic mirrors for atom optics, and the measurement of the van der Waals force with an accuracy of about 15%, using cobalt thin films. We also discuss some preliminary results on the temperature-dependent reflectivity for atoms near the ferromagnetic transition at 250 K in the LCMO film, and on the domain dynamics and relaxation.  相似文献   

19.
Fe50Co50 thin films with thickness of 30 and 4 nm have been produced by rf sputtering on glass substrates, and their surface has been observed with atomic force microscopy (AFM) and magnetic force microscopy (MFM); MFM images reveal a non-null component of the magnetization perpendicular to the film plane. Selected samples have been annealed in vacuum at temperatures of 300 and 350 °C for times between 20 and 120 min, under a static magnetic field of 100 Oe. DC hysteresis loops have been measured with an alternating gradient force magnetometer (AGFM) along the direction of the field applied during annealing and orthogonally to it. Samples with a thickness of 4 nm display lower coercive fields with respect to the 30 nm thick ones. Longer annealing times affect the development of a harder magnetic phase more oriented off the film plane. The field applied during annealing induces a moderate magnetic anisotropy only on 30 nm thick films.  相似文献   

20.
Structure and magnetization of CoZrNb amorphous films prepared by DC magnetron sputtering have been studied as a function of film thickness (t), from 35 to 840 nm. Using comprehensive characterization, we show that the CoZrNb amorphous films possess a single phase and no nanocrystalline can be detected. The magnetic measurements indicate that the magnetization reversal of CoZrNb films is strongly dependent on t. That is, the coercivity is abruptly reduced to be lower than 4 Oe with t increasing from 35 to 105 nm, and then gradually decreases to ∼0.2 Oe as t increases. This coercivity transition versus t is accompanied by the strong magnetization reversal when t is larger than 105 nm. The results reveal that CoZrNb amorphous films with comparatively large film thickness (>100 nm) are suitable for sensors and anti-faked materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号