首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D. P. Roy 《Pramana》1998,51(1-2):7-26
I start with a brief introduction to Higgs mechanism and supersymmetry. Then I discuss the theoretical expectations, current limits and search strategies for Higgs boson(s) at LHC — first in the SM and then in the MSSM. Finally I discuss the signatures and search strategies for the superparticles.  相似文献   

2.
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.  相似文献   

3.
The ”Snowmass Points and Slopes” (SPS) are a set of benchmark points and parameter lines in the MSSM parameter space corresponding to different scenarios in the search for Supersymmetry at present and future experiments. This set of benchmarks was agreed upon at the 2001 ”Snowmass Workshop on the Future of Particle Physics” as a consensus based on different existing proposals. Received: 4 March 2002 / Published online: 26 July 2002  相似文献   

4.
The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on $B^{0}_{s}\to \mu^{+}\mu^{-}$ (LHCb experiment), the relic density (WMAP and other cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m 0) below 1500 GeV. For large m 0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.  相似文献   

5.
We investigate the constraints on supersymmetry (SUSY) arising from available precision measurements using a global fit approach. When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e.g. sign?(μ) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude.  相似文献   

6.
Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above \(m_h\sim 125\) GeV. Within the RNS framework, gluinos dominantly decay via \(\tilde{g}\rightarrow t\tilde{t}_1^{*},\ \bar{t}\tilde{t}_1 \rightarrow t\bar{t}\widetilde{Z}_{1,2}\) or \(t\bar{b}\widetilde{W}_1^-+c.c.\), where the decay products of the higgsino-like \(\widetilde{W}_1\) and \(\widetilde{Z}_2\) are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large \(\not \!\!{E_T}\). We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for \(m_{\tilde{g}} < 2400 \ (2800)\) GeV for an integrated luminosity of 300 (3000) fb\(^{-1}\). We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of \(m_{\tilde{g}}\) with a statistical precision of 2–5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5\(\sigma \) discovery is possible at the LHC.  相似文献   

7.
Uncovering the physics of electroweak symmetry breaking (EWSB) is the raison-d’etre of the LHC. Flavor questions, it would seem, are of minor relevance for this quest, apart from their role in constraining the possible structure of EWSB physics. In this short review article, we outline, using flavor-dependent slepton physics as an example, how flavor can affect both searches for supersymmetry, and future measurements aimed at understanding the nature of any new discoveries. If the production cross-sections for supersymmetry are relatively low, as indicated by the fact that it has not revealed itself yet in standard searches, the usual assumptions about the superpartner spectra need rethinking. Furthermore, one must consider more intricate searches, such as lepton-based searches, which could be susceptible to flavor effects. We start by reviewing the flavor structure of existing frameworks for mediating supersymmetry breaking, emphasizing flavor-dependent models proposed recently. We use the kinematic endpoints of invariant mass distributions to demonstrate how flavor dependence can impact both searches for supersymmetry and the Inverse Problem. We also discuss methods for measuring small-mass splittings and mixings at the LHC, both in models with a neutralino LSP and in models with a charged slepton (N)LSP.  相似文献   

8.
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb−1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s μμ and μ. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.  相似文献   

9.
String compactification with fluxes yields MSSM soft SUSY breaking terms that receive comparable contributions from modulus and anomaly mediation whose relative strength is governed by a phenomenological parameter α  . Gaugino and first/second generation (and sometimes also Higgs and third generation) scalar mass parameters unify at a mirage unification scale Q≠MGUTQMGUT, determined by the value of α  . The ratio of scalar to gaugino masses at this mirage unification scale depends directly on the scalar field modular weights, which are fixed in turn by the brane or brane intersections on which the MSSM fields are localized. We outline a program of measurements which can in principle be made at the CERN LHC and the International Linear e+ee+e Collider (ILC) which can lead to a determination of the modular weights.  相似文献   

10.
11.
12.
An overview of the recent results from the LHC experiments is given for the searches for a Higgs Boson and New Physics with √s = 7 and 8 TeV data. Studies of Standard Model processes, including polarization measurements, are also presented.  相似文献   

13.
14.
We suggest a new setup where SUSY breaking spurion F-term possesses lepton number. This setup not only modifies sparticle mass spectra but also realizes several new models, where neutrino mass is naturally induced through radiative corrections. We here suggest two new models; the first one is (i): pseudo-Dirac/Schizophrenic neutrino model, and the second one is (ii): pure Majorana neutrino model. We will also show this setup can naturally apply to the supersymmetric Zee-Babu model.  相似文献   

15.
We construct a model in which electro-weak symmetry breaking is induced by a strongly coupled sector, which is described in terms of a five-dimensional model in the spirit of the bottom-up approach to holography. We compute the precision electro-weak parameters, and identify regions of parameter space allowed by indirect tests. We compute the spectrum of scalar and vector resonances, which contains a set of parametrically light states that can be identified with the electro-weak gauge bosons and a light dilaton. There is then a little desert, up to 2–3 TeV, where towers of resonances of the vector, axial-vector and scalar particles appear.  相似文献   

16.
The interpretation of experimental results at RHIC and in the future also at LHC requires very reliable and realistic models. Considerable effort has been devoted to the development of such models during the past decade, many of them being heavily used in order to analyze data. It is the purpose of this paper to point out serious inconsistencies in the above-mentioned approaches. We will demonstrate that requiring theoretical self-consistency reduces the freedom in modeling high energy nuclear scattering enormously. We will introduce a fully self-consistent formulation of the multiplescattering scheme in the framework of a Gribov-Regge type effective theory. In addition, we develop new computational techniques which allow for the first time a satisfactory solution of the problem in the sense that calculations of observable quantities can be done strictly within a self-consistent formalism.  相似文献   

17.
18.
《Comptes Rendus Physique》2015,16(4):407-423
In this review, we present highlight results of the first three years of the LHC running on searches for new physics beyond the Standard Model. The excellent performance of the LHC machine and detectors has provided a large, high-quality dataset, mainly proton–proton interactions at a centre of mass energy of 7 TeV (collected in 2010 and 2011) and 8 TeV (collected in 2012). This allowed the experiments to test the Standard Model at the highest available energy and to search for new phenomena in a considerably enlarged phase space compared to previous colliders.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号