首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We analyze the phenomenon of frequency clustering in a system of coupled phase oscillators. The oscillators, which in the absence of coupling have uniformly distributed natural frequencies, are coupled through a small-world network, built according to the Watts-Strogatz model. We study the time evolution and determine variations in the transient times depending on the disorder of the network and on the coupling strength. We investigate the effects of fluctuations in the average frequencies, and discuss the definition of the threshold for synchronization. We characterize the structure of clusters and the distribution of cluster sizes in the synchronization transition, and define suitable order parameters to describe the aggregation of the oscillators as the network disorder and the coupling strength change. The non-monotonic behavior observed in some order parameters is related to fluctuations in the mean frequencies.  相似文献   

2.
We study the dynamics of a repulsively coupled array of phase oscillators. For an array of globally coupled identical oscillators, repulsive coupling results in a family of synchronized regimes characterized by zero mean field. If the number of oscillators is sufficiently large, phase locking among oscillators is destroyed, independently of the coupling strength, when the oscillators' natural frequencies are not the same. In locally coupled networks, however, phase locking occurs even for nonidentical oscillators when the coupling strength is sufficiently strong.  相似文献   

3.
《Physics letters. A》2020,384(24):126605
We investigate the dynamical robustness property of the damaged network of active and inactive oscillators under the influence of the mean-field diffusion. The tolerance of dynamical activity of the entire coupled network has realized through the aging transition in the coupled dynamical network. We analytically derived the critical threshold of mean-field density and coupling values for the appearance of the aging transition in the damaged network. By using the critical values as a quantifiable measure of dynamical robustness of the damaged network, we showed that higher mean-field value is favorable to increase the dynamical robustness of the entire network. We also perform the numerical experiment on the network of Stuart-Landau oscillators and the obtained numerical results have an excellent agreement with the analytical findings. Finally, we extend our investigation into the coupled time-delayed network and discussed the affirmative influence of the mean-field parameter on the dynamical robustness of the network.  相似文献   

4.
We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case.  相似文献   

5.
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process.  相似文献   

6.
Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.  相似文献   

7.
We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.  相似文献   

8.
We investigate the dynamics of a population of globally coupled FitzHugh-Nagumo oscillators with a time-periodic coupling strength. While for synchronizing global coupling, the in-phase state is always stable, the oscillators split into several cluster states for desynchronizing global coupling, most commonly in two, irrespective of the coupling strength. This confines the ability of the system to form n:m locked states considerably. The prevalence of two and four cluster states leads to large 2:1 and 4:1 subharmonic resonance regions, while at low coupling strength for a harmonic 1:1 or a superharmonic 1:m time-periodic coupling coefficient, any resonances are absent and the system exhibits nonresonant phase drifting cluster states. Furthermore, in the unforced, globally coupled system the frequency of the oscillators in a cluster state is in general lower than that of the uncoupled oscillator and strongly depends on the coupling strength. Periodic variation of the coupling strength at twice the natural frequency causes each oscillator to keep oscillating with its autonomous oscillation period.  相似文献   

9.
We discuss the sensitivity of a population of coupled oscillators to differences in their natural frequencies, i.e., to detuning. We argue that for three or more oscillators, one can get great sensitivity even if the coupling is strong. For N globally coupled phase oscillators we find there can be bifurcation to extreme sensitivity, where frequency locking can be destroyed by arbitrarily small detuning. This extreme sensitivity is absent for N = 2, appears at isolated parameter values for N = 3 and N = 4, and can appear robustly for open sets of parameter values for N > or = 5 oscillators.  相似文献   

10.
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled R?ssler oscillators.  相似文献   

11.
Self-sustained oscillators may turn non-self-oscillatory as a result of some kind of deterioration, which we call aging for simplicity. We discuss the effect of aging on the behavior of globally and diffusively coupled oscillators which are either all periodic or chaotic. It is shown that at a certain level of aging, macroscopic oscillation stops in a way which depends on the coupling strength. A universal scaling function to describe it is analytically derived and numerically verified.  相似文献   

12.
Amit Sharma 《Physics letters. A》2019,383(16):1865-1870
We investigate the dynamics of delay-coupled relay oscillators with conjugate (or dissimilar) coupling and find the partial death with the phase-flip transition. This phenomenon is quite general and occurs for the limit cycle as well as chaotic relay oscillators. In the regime of partial death, parts of the system oscillate with large amplitude, while other element stays at rest. Using the Stuart-Landau and Rössler oscillators, we demonstrate that partial amplitude death is a robust dynamical state in coupled oscillators. We also studied the mismatch delay and find different types of dynamical pattern with partial death.  相似文献   

13.
We present a general theory for the onset of coherence in collections of heterogeneous maps interacting via a complex connection network. Our method allows the dynamics of the individual uncoupled systems to be either chaotic or periodic, and applies generally to networks for which the number of connections per node is large. We find that the critical coupling strength at which a transition to synchrony takes place depends separately on the dynamics of the individual uncoupled systems and on the largest eigenvalue of the adjacency matrix of the coupling network. Our theory directly generalizes the Kuramoto model of equal strength all-to-all coupled phase oscillators to the case of oscillators with more realistic dynamics coupled via a large heterogeneous network.  相似文献   

14.
We present an automatic control method for phase locking of regular and chaotic nonidentical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic Rössler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic Rössler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators.  相似文献   

15.
We investigate the diffusion coefficient of the time integral of the Kuramoto order parameter in globally coupled nonidentical phase oscillators. This coefficient represents the deviation of the time integral of the order parameter from its mean value on the sample average. In other words, this coefficient characterizes long-term fluctuations of the order parameter. For a system of N coupled oscillators, we introduce a statistical quantity D, which denotes the product of N and the diffusion coefficient. We study the scaling law of D with respect to the system size N. In other well-known models such as the Ising model, the scaling property of D is D~O(1) for both coherent and incoherent regimes except for the transition point. In contrast, in the globally coupled phase oscillators, the scaling law of D is different for the coherent and incoherent regimes: D~O(1/N(a)) with a certain constant a>0 in the coherent regime and D~O(1) in the incoherent regime. We demonstrate that these scaling laws hold for several representative coupling schemes.  相似文献   

16.
We study the emergence of collective synchronization in large directed networks of heterogeneous oscillators by generalizing the classical Kuramoto model of globally coupled phase oscillators to more realistic networks. We extend recent theoretical approximations describing the transition to synchronization in large undirected networks of coupled phase oscillators to the case of directed networks. We also consider the case of networks with mixed positive-negative coupling strengths. We compare our theory with numerical simulations and find good agreement.  相似文献   

17.
18.
We propose a general formulation of coupling for engineering synchronization in chaotic oscillators for unidirectional as well as bidirectional mode. In the synchronization regimes, it is possible to amplify or to attenuate a chaotic attractor with respect to other chaotic attractors. Numerical examples are presented for a Lorenz system, Ro?ssler oscillator, and a Sprott system. We physically realized the controller based coupling design in electronic circuits to verify the theory. We extended the theory to a network of coupled oscillators and provided a numerical example with four Sprott oscillators.  相似文献   

19.
We experimentally investigate the formation of clusters in a population of globally coupled photochemical oscillators. The system consists of catalytic micro-particles in Belousov-Zhabotinsky solution and the coupling exploits the excitatory properties of light; an increase in the light intensity leads to excitation (“firing") of an oscillator. As the coupling strength is increased, a transition occurs from incoherence to clustering, whereby the oscillators split into synchronised groups, to complete synchronisation. Multistability is observed between a one-phase cluster (fully synchronised group) and two-phase clusters (two groups with the same frequency but different phases). The results are reproduced in simulations and we demonstrate that the heterogeneity of the population as well as the relaxational nature of the oscillators is important in the observation of clusters. We also examine the exploitation of the phase model for the prediction of clusters in experiments.  相似文献   

20.
We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensembles---lattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号