首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium aluminate (MgAl2O4) doped with trivalent chromium (Cr3+) was synthesized by the combustion method. The prepared sample was characterized by X-ray powder diffraction, Brunauer-Emmet-Teller (BET) adsorption isotherms and diffuse-reflectance UV-vis spectroscopy techniques. Electron paramagnetic resonance (EPR) and photoluminescence (PL) studies have been performed at room temperature and at 110 K. The EPR spectrum exhibit resonance signals at g=5.37, 4.53, 3.82, 2.26 and 1.96 characteristic of Cr3+ ions. The luminescence of Cr3+-activated MgAl2O4 exhibits a red emission peak around 686 nm from the synthesized phosphor particles upon 551 nm excitation. The luminescence is assigned to a transition from the upper 2Eg4A2g ground state of Cr3+ ions. By correlating EPR and optical data the crystal field splitting parameter (Dq), Racah inter-electronic repulsion parameter (B) and the bonding parameters have been evaluated and discussed. The bonding parameters suggests that the ionic nature of Cr3+ ions with the ligands and the Cr3+ ions are in distorted octrahedral environment.  相似文献   

2.
NdMn1?x Cr x O3 and Nd0.6Ca0.4Mn1?x Cr x O3 solid solutions have been studied by neutron diffraction and magnetic measurements. NdMn0.5Cr0.5O3 is found to have a magnetic structure consisting of an antiferromagnetic G-type component and a ferromagnetic component, which are caused by 3d ions. The magnetic moments of the neodymium ions are parallel to the ferromagnetic component. Nd0.6Ca0.4Mn0.5Cr0.5O3 mainly has a G-type magnetic structure, and the magnetic moments of the neodymium ions are normal to the antiferromagnetism vector. Magnetic phase diagrams are plotted for both systems. They are interpreted on the assumption that the Mn3+-O-Cr3+ superexchange interactions are positive and the Mn4+-O-Cr3+ interactions are negative; the fact that manganese and chromium ions are not ordered in a crystal lattice is taken into account. Concentration magnetic phase transformations proceed through a two-phase state because of the internal chemical inhomogeneity of the solid solutions.  相似文献   

3.
Cr-doped ZnO nanostructures, in well-aligned Zn0.92Cr0.06O nanorods array, were synthesized by radio frequency (RF) magnetron sputtering deposition at different temperatures. The effects of growth temperature on the structure and optical properties of Zn0.92Cr0.06O nanorods were investigated in terms of scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and spectrophotometer. With increase the growth temperature, Zn0.94Cr0.06O nanorods have a strong improved crystalline quality. High growth temperature enhances the build-in electric field in the depletion region in the grain of the nanorods, which trap free carriers from the bulk of the grains. XPS results shows that Cr3+ ions substitute Zn2+ ions, and no secondary phases in the sample are found, meanwhile the oxygen vacancies decrease with increasing growth temperature. The high growth temperature causes a significant increase in optical transmittance of the Zn0.92Cr0.06O nanorods, which can be attributed to the weakening of scattering and absorption of light because of the increase of grain size. The red shift of the optical band gap can be mostly likely related to the Burstein–Moss effect.  相似文献   

4.
We explore the effects of hydrogen annealing on the room temperature ferromagnetism and optical properties of Cr-doped ZnO nanoparticles synthesized by the sol-gel method. X-ray diffraction and x-ray photoelectron spectroscopy data show evidence that Cr has been incorporated into the wurtzite ZnO lattice as Cr2+ ions substituting for Zn2+ ions without any detectable secondary phase in as-synthesized Zn0.97Cr0.03O nanopowders. The room temperature magnetization measurements reveal a large enhancement of saturation magnetization Ms as well as an increase of coercivity of H2-annealed Zn0.97Cr0.03O:H samples. It is found that the field-cooled magnetization curves as a function of temperature from 40 to 400 K can be well fitted by a combination of a standard Bloch spin-wave model and Curie–Weiss law. The values of the fitted parameters of the ferromagnetic exchange interaction constant a and the Curie constant C of H2-annealed Zn0.97Cr0.03O:H nanoparticles are almost doubled upon H2-annealing. Photoluminescence measurements show evidence that the shallow donor defect or/and defect complexes such as hydrogen occupying an oxygen vacancy Ho may play an important role in the origin of H2-annealing induced enhancement of ferromagnetism in Cr-H codoped ZnO nanoparticles.  相似文献   

5.
Abstract

EPR absorption measurements on ‘pure’, highly pure and A12O3 doped Cr2O3 powder have been made. The EPR absorption in the ‘pure’ powders obtained below Ntel temperature is shown to be due to background magnetic impurities present in the powders and not due to superparamagnetism as suggested by earlier authors. No EPR absorption could be observed below Nkl temperature in highly pure powders (total background impurity concentration less than 5 ppm). ‘Pure’ powders or highly pure powders mixed with A12O3 powder and annealed at high temperatures showed a symmetrical EPR absorption line at room temperature. The shape and the g value of this line are practically the same as those obtained for Cr3+ ions in Cr2O3 above Nee1 temperature or in other nonmagnetic crystals. It is concluded from these results that the impurities diffuse into Cr2O3 powder, the antiferro-magnetic coupling between some of the Cr3+ ions is broken and these Cr3+ ions become paramagnetic, even when the bulk of the material is in antiferromagnetic state. The variation of half-width of EPR lines with impurity concentration shows that the dipolar coupling between Cr3+ ions decreases with the increase in impurity concentration and when the impurity concentration is high the Néel temperature seems to shift to lower temperatures. A longer heat treatment of the ‘pure’ B powder resulted in the production of shining metal particles in the powder. The EPR of this powder showed excessive increase in the intensity of EPR absorption when the temperature of the powder was raised to a value just above the Néel temperature. A comparison of these reuslts with the work of earlier authors suggests that the shinning metal particles are those of chromium metal and are responsible for this increase in EPR absorption.  相似文献   

6.
ZnGa2O4:Cr3+ thin films with bright red emission were synthesized using a sol-gel process, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and UV-vis and fluorescence spectrophotometry measurements. Effects of calcining temperature, film thickness, calcining duration and substrates on the crystal structure and photoluminescent property have been investigated. It is found that the crystallinity, Ga/Zn ratio and band gap energy (Eg) are significant factors influencing optical characteristics, while the nature of substrates affect the surface morphologies of ZnGa2O4:Cr3+ thin films.  相似文献   

7.
Cr3+-doped α-Al2O3 nanoparticles (Al2−xCrxO3, 0.005 ≤ x ≤ 0.05) were synthesized by co-precipitation method. X-ray diffraction (XRD) patterns of Cr3+:Al2O3 nanoparticles revealed the crystallite size of ∼53 nm and electron microscopy (SEM & TEM) confirmed the spherical nanoparticle formation. Diffuse reflectance spectra (DRS) displayed peaks at 406 and 558 nm corresponding to the Cr3+ transitions which became prominent with the increase in Cr3+ concentration which was also evidenced by the gradually increasing pink coloration of the samples. Photoluminescence (PL) studies showed the sharp red emission at 694 nm (ruby line) which was observed for all samples. The Dq/B value for all samples was found to be greater than 2.3 confirming the presence of Cr3+ ions in the octahedral sites. Chromaticity diagrams displayed the maximum red appearance for the sample with x = 0.01 and a lifetime of 4 ms. The synthesized Cr3+:Al2O3 nanoparticles with smaller crystallite sizes and narrow near monochromatic emission can be used in various applications including sensing, lasing, and bioimaging applications.  相似文献   

8.
A series of hexaborides La1?xEuxB6 (x=0.0–1.0) were synthesized under a pressure of 3.5 GPa and at a temperature of 1600C using La2O3, Eu2O3 and amorphous boron as the starting materials. The products were characterized by X‐ray Diffraction (XRD) and Mössbauer spectroscopy. XRD data analysis shows that all samples crystallize in a cubic CsCl‐type structure, and the cell volume increases with x. Room temperature 151Eu Mössbauer measurements reveal that Eu ions in all samples are in the divalent state, except for the x=1.0 sample where a small amount of Eu3+ ions was detected. The quadrupole splitting of the Eu2+ ions is positive. Eu ions were reduced from trivalent to divalent during the high‐pressure and ‐temperature processes. The isomer shifts of the Eu2+ ions are all smaller than ?12.5 mm/s, suggesting that there is no valence fluctuation in the samples. The hexaborides doped by divalent Eu are not metallic.  相似文献   

9.
Cr/SiO2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr6+ and Cr3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr6+ to Cr3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO3 and Cr2O3 standards did not reveal variation in the binding energy of Cr 2p3/2, but a physical mixture of CrO3 with SiO2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed.  相似文献   

10.
Intergrowth perovskite type complex oxides of composition La1.2Sr1.8MnCrO7 and La1.5Sr1.5MnCrO7 have been synthesized by ceramic method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. Both the phases behave as insulators in the high temperature region and the linearity of log ρ versus T ?1/4 plot in the temperature range 150–300 K shows that the electronic conduction occurs by a 3D variable range hopping mechanism. The phases show insulator-metal transition at low temperature which could be due to the mixed valence state of Mn3+/Mn4+ by double exchange mechanism. The ferromagnetic interactions observed for the samples arises from double exchange interaction between Mn 3+ and Mn4+ and Cr3+ and Mn3+ ions.  相似文献   

11.
The effect of Cr3+ substitution in Mg–Zn ferrite, with a chemical formula Mg0.5Zn0.5CrxFe2−xO4 (x=0.0–1.0), synthesized by a sol–gel auto-combustion reaction is presented in this paper. The resultant powders were investigated by various techniques, including X-ray diffractometry (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR), vibrating sample magnetometry (VSM), and DC resistivity. The XRD pattern revealed that the cubic spinel structure is maintained for the all the compositions. The particle sizes measured from XRD and TEM are in good agreement with each other. The cation distribution suggests that Mg2+, Cr3+ and Fe3+ have strong preference towards octahedral B-site. The theoretical lattice constant and experimental lattice constant match each other very well. The IR analysis supports the presently accepted cation distribution. The saturation magnetization decreases linearly with increasing Cr3+ content. Curie temperatures are obtained by the Laoria and AC susceptibility techniques. The dc resistivity has been investigated as a function of temperature and composition.  相似文献   

12.
《Solid State Ionics》2006,177(33-34):2939-2944
The bulk defect structure in Cr2−xTixO3 (x = 0.05, 0.20 and 0.30) has been studied by X-ray absorption spectroscopy measurements at the Cr and Ti K-edges. The results show that the Ti is predominantly present in the IV oxidation state and resides on the normal Cr host lattice site. The dopant is charge compensated by Cr3+ vacancies and there is evidence for the formation of defect clusters; however, the detailed structure of these clusters could not be deduced.  相似文献   

13.
The Mn-, Cr-doped and Mn, Cr-co-doped MgAl2O4 powders have been synthesized via a gel-solid reaction method. Energy transfer from Mn2+ to Cr3+ has been observed for the first time in the co-doped MgAl2O4 phosphors. When excited with blue light with a wavelength of 450 nm at room temperature, both green emission from Mn2+ around 520 nm and red emission from Cr3+ around 675and 693 nm were generated. Moreover, the color of the emission can be modified by controlling the doping concentrations of Mn2+ and Cr3+. Therefore, MgAl2O4: Mn2+, Cr3+ could be used as a single-phased phosphor for white LED with a blue LED chip. The energy transfer in terms of Mn2+ to Cr3+ is determined by means of radiation and reabsorption.  相似文献   

14.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of Cr2O3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS), differential thermal analysis and conventional spectroscopic techniques. The X-ray diffraction and scanning electron microscopic studies reveal the presence of lithium phosphate, calcium phosphate and chromium phosphate (complexes of Cr3+, Cr5+ and Cr6+ ions) crystal phases. The study on DTA suggests that the crystallization is predominantly due to the surface crystallization when the concentration of nucleating agent Cr2O3 is around 0.8 mol%. The IR and Raman spectral studies of these samples indicate that the sample crystallized with 0.8 mol% Cr2O3 is more compact and possesses high rigidity due to the presence of chromium ions largely in tetrahedral positions.  相似文献   

15.
In this study, nano-sized ferrites of compositions (Ni0.6Cu0.20Zn0.20Fe2−xCrxO4), where x=0-1.0, were synthesized through nitrate-citrate auto-combustion method at relatively low temperature. XRD revealed the formation of nano-sized ferrite particles with cubic spinel structure. An exception was obtained for samples with Cr content ≤0.2, where weak diffraction peaks attributed to the presence of CuO and Fe2O3 were appeared. The average crystallite sizes are much dependent on the chromium content and were found to decrease with its increase. The lattice parameter (a) slightly decreases with Cr substitution, which can be explained on the basis of the relative ionic radii of Cr3+ and Fe3+ ions. X-ray density was found also to decrease slightly with increase in chromium content, which indicates lower densification by the addition of Cr. FT-IR measurements show the characteristic ferrite bands. The Mössbauer spectra varied from Zeeman sextets to a relaxed doublet by increase in Cr content, which indicates a decrease in the hyperfine field at the octahedral site. Electrical property measurements revealed that Cr3+ ions do not participate in conduction process but limit the degree of Fe3+-O2−-Fe3+ conduction resulting in a decrease in the conductivity and increase in conduction activation energy.  相似文献   

16.
57Fe Mössbauer and X-ray diffraction measurements have been performed on a perovskite CaFeO3 under external high pressure upto 50 GPa at room temperature using a diamond anvil cell. Above 29 GPa the57Fe magnetic hyperfine splitting appears superimposing with usual paramagnetic pattern of CaFeO3. Magnitude of hyperfine field is 16 T and much smaller than 33 T of typical Fe4+ in SrFeO3 suggesting a transition from high-spin S=2 to low-spin S=1 state in CaFeO3.  相似文献   

17.
采用高温固相法合成了Cd3Al2Ge3O12:Cr3+多晶材料,利用X射线衍射对其结构进行了分析,通过Cr3+的室温吸收光谱、室温和77K发射光谱分别对其光谱特性和晶场参数进行了分析和计算.结果表明:在450 nm的蓝光激发下,Cd3Al2Ge3O12:Cr3+室温发 关键词: 3Al2Ge3O12:Cr3+')" href="#">Cd3Al2Ge3O12:Cr3+ 荧光光谱 晶场参数 可调谐激光  相似文献   

18.
The effect of Cr-doping on the structural, magnetic and transport properties of perovskite manganites La0.8Ca0.2Mn1−xCrxO3 (0≤x≤0.7) has been investigated. The Curie temperature (TC) of the Cr-doped samples is almost unchanged up to 30% of Cr-doping. The Cr-doped samples, however, undergo a transition from the parent metallic state to the insulating state below TC. The dc and ac magnetization data suggest that ferromagnetic clusters induced by double exchange interaction between Cr3+ and Mn3+ ions and antiferromagnetic components driven by Cr3+/Mn4+ and Cr3+/Cr3+ interactions are present in the Cr-doped system, which is supported by comparative studies on magnetic and transport properties of LaMnO3+δ and LaMn0.75Cr0.25O3+δ.  相似文献   

19.
Nanosized ZnGa2O4:Cr3+ powder is synthesized through hydrothermal method. The average particle size is 20 nm and they are spherical in shape. The excitation band from the charge transfer between Cr3+-O2− shows a blueshift behavior due to quantum confinement effect. X-ray diffraction pattern, Fourier transform-infrared spectrum, and electron paramagnetic resonance signal indicate that nanosized ZnGa2O4:Cr3+ phosphor shows many defect-related energy states and heavy lattice distortion in comparison with bulk ZnGa2O4:Cr3+ phosphor. Many defect states result in more nonradiative loss and shorter decay time.  相似文献   

20.
Chromium and manganese co-substituted spinel magnesioferrites of the composition Mg1?x Mn x Fe2?2x Cr2x O4 (x?=?0.0, 0.1, 0.2, 0.3, and 0.5) were investigated with X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic measurements. The cation distribution inferred suggests that Mn2+ and Cr3+ ions dominantly occupy the A- and B-sites respectively. The gradual decrease of the hyperfine fields and Curie temperatures with increasing x reflects a gradual weakening in the AB exchange interaction. Mössbauer data of the sample with x = 0.5 is suggestive of cation clustering and/or superparamagnetism. The magnetization data is suggestive of Yafet-Kittel-type canted magnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号