共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》2020,384(14):126285
We study classification of anti-Hermitian topological insulators based on the discrete symmetries: time-reversal, particle-hole and chiral symmetries. Contrary to the most general form of non-Hermitian systems, bulk boundary correspondence can hold in anti-Hermitian topological systems. We map a topologically nontrivial Hermitian Hamiltonians into an anti-Hermitian system and we show that the standard table of topological insulators can be used for anti-Hermitian Hamiltonians. 相似文献
2.
We consider periodically modulated Su–Schrieffer–Heeger (SSH) model with gain and loss. This model, which can be realized with current technology in photonics using waveguides, allows us to study Floquet topological insulating phase. By using Floquet theory, we find the quasi-energy spectrum of this one dimensional PT symmetric topological insulator. We show that stable Floquet topological phase exists in our model provided that oscillation frequency is large and the non-Hermitian degree is below than a critical value. 相似文献
3.
《Physics letters. A》2020,384(4):126094
A non-Hermitian topological insulator is fundamentally different from conventional topological insulators. The non-Hermitian skin effect arises in a nonreciprocal tight binding lattice with open edges. In this case, not only topological states but also bulk states are localized around the edges of the nonreciprocal system. We discuss that controllable switching from topological edge states into topological extended states in a chiral symmetric non-Hermitian system is possible. We show that the skin depth decreases with non-reciprocity for bulk states but increases with it for topological zero energy states. 相似文献
4.
高阶拓扑绝缘体是近年来发现的一类具有特殊拓扑相的新型拓扑绝缘体,目前已在光学、声学等多种经典波系统中实现.本文采用数值模拟方法研究了一种二维声学蜂窝结构,通过调节胞内和胞间耦合波导管,使体能带发生反转诱导拓扑相变,进而利用拓扑相构建出声学二阶拓扑绝缘体.蜂窝结构的拓扑性质可以用量子化的四极矩Qij表征,当Qij=0时,系统是平庸的;而当Qij=1/2时,系统是拓扑的.基于该蜂窝结构,分别研究了六边形和三角形结构的声学高阶态,在两种构型的蜂窝结构中均观测到了孤立的零维角态,研究结果表明只有存在钝角的六边形结构对缺陷具有鲁棒性,受拓扑保护.本文的拓扑角态丰富了高阶拓扑绝缘体的研究,同时可为紧凑声学系统中的鲁棒限制声提供一条新途径. 相似文献
5.
近年来,探索新的拓扑量子结构、深入分析各种多聚化拓扑晶格中的新奇物理性质已经成为热点.并且,多聚化拓扑模型在量子光学等领域的研究也愈发深入,拥有广阔的发展前景.本文聚焦于研究三聚化非厄密晶格中的新奇拓扑特性.首先,若晶胞内最近邻正反向耦合不相等,三聚化模型中的体态和边缘态出现趋肤效应.其中,随着最近邻耦合正反系数差的增大,拓扑保护的边缘态的宽度和简并度均可被调制,边缘态数量也会减少.其次,当在考虑次近邻耦合的影响时,随着次近邻耦合系数在适当范围内变化,系统本征能谱的上下能隙及其中具有趋肤效应的边缘态也会发生不对称的变化.此外,当适当改变两种耦合系数,三聚化非厄密模型的体态和边缘态的局域程度也会随之发生变化. 相似文献
6.
L.B. Castro 《Physics letters. A》2011,375(25):2510-2512
The relativistic problem of fermions subject to a PT-symmetric potential in the presence of position-dependent mass is reinvestigated. The influence of the PT-symmetric potential in the continuity equation and in the orthonormalization condition are analyzed. In addition, a misconception diffused in the literature on the interaction of neutral fermions is clarified. 相似文献
7.
We study the topological properties of a one-dimensional (1D) hardcore Bose-Fermi mixture using the exact diagonalization method. We firstly add a hardcore boson to a fermionic system and by examining the edge states we find that the quasi-particle manifests the topological properties of the system. Then we study a mixture with 7 fermions and 1 boson. We find that the mixture also exhibits topological properties and its behaviors are similar to that of the corresponding fermionic system. We present a qualitative explanation to understand such behaviors using the mapping between a hardcore boson and a spinless fermion. These results show the existence of topological properties in a 1D hardcore Bose-Fermi mixture and may be realized using cold atoms trapped in optical lattices experimentally. 相似文献
8.
With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart. 相似文献
9.
Su-Schreiffer-Heeger模型预测了在一维周期晶格的边缘处可能出现零维的拓扑零能模,其能量本征值总是出现在能隙的正中间.本文以半导体微腔阵列中光子和激子在强耦合情况下形成的准粒子为例,通过准粒子的自旋轨道耦合与Zeeman效应,研究了时间反演对称性破缺对拓扑零能模的影响.发现拓扑零能模的能量本征值可以随着自旋轨道耦合强度的变化在整个带隙内移动,自旋相反的模式移动方向相反;在二维微腔阵列中发现了沿着晶格边缘移动的拓扑零能模,提出了一维零能模的概念.由于时间反演对称性的破缺,这种一维拓扑零能模解除了在相反传输方向上的能级的简并,从而在传输过程中出现极强的绕过障碍物的能力. 相似文献
10.
11.
Understanding the physical significance and probing the global invariants characterizing quantum topological phases in extended systems is a main challenge in modern physics with major impact in different areas of science. Here, a quantum‐information‐inspired probing method is proposed where topological phase transitions are revealed by a non‐Markovianity quantifier. The idea is illustrated by considering the decoherence dynamics of an external read‐out qubit that probes a Su–Schrieffer–Heeger (SSH) chain with either pure dephasing or dissipative coupling. Qubit decoherence features and non‐Markovianity measure clearly signal the topological phase transition of the SSH chain. 相似文献
12.
Conor R. Thomas Girija Sahasrabudhe Satya Kumar Kushwaha Jun Xiong Robert J. Cava Jeffrey Schwartz 《固体物理学:研究快报》2014,8(12):997-1002
The robustness of the Dirac‐like electronic states on the surfaces of topological insulators (TIs) during materials process‐ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi2Te2Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov–de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case – surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides – the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
13.
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We find that topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states. 相似文献
14.
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We find that topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states. 相似文献
15.
Topological insulators' properties and their potential device applications are reviewed. We also explain why topologi- cal insulator (TI) nanostructnres are an important avenue for research and discuss some methods by which TI nanostructures are produced and characterized. The rapid development of high-quality TI nanostructures provides an ideal platform to ex- ploit salient physical phenomena that have been theoretically predicted but not yet experimentally realized. 相似文献
16.
Heiss WD 《Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics》2000,61(1):929-932
Level repulsion is associated with exceptional points which are square root singularities of the energies as functions of a (complex) interaction parameter. This is also valid for resonance state energies. Using this concept it is argued that level anticrossing (crossing) must imply crossing (anticrossing) of the corresponding widths of the resonance states. Further, it is shown that an encircling of an exceptional point induces a phase change of one wave function but not of the other. An experimental setup is discussed where this phase behavior, which differs from the one encountered at a diabolic point, can be observed. 相似文献
17.
Chengyong Zhong 《Frontiers of Physics》2021,16(6):63503
Three-dimensional (3D) topological insulators (TIs) have been studied for approximately fifteen years, but those made from group-IV elements, especially Ge and Sn, seem particularly attractive owing to their nontoxicity, sizable intrinsic spin–orbit coupling (SOC) strength and natural compatibility with the current semiconductor industry. However, group-IV elemental TIs have rarely been reported, except for the low temperature phase of α-Sn under strain. Here, based on first-principles calculations, we propose new allotropes of Ge and Sn, named T5-Ge/Sn, as desirable TIs. These new allotropes are also highly anisotropic Dirac semimetals if the SOC is turned off. To the best of our knowledge, T5-Ge/Sn are the first 3D allotropes of Ge/Sn that possess topological states in their equilibrium states at room temperature. Additionally, their isostructures of C and Si are metastable indirect and direct semiconductors. Our work not only reveals two promising TIs, but more profoundly, we justify the advantages of group-IV elements as topological quantum materials (TQMs) for fundamental research and potential practical applications, and thus reveal a new direction in the search for desirable TQMs. 相似文献
18.
We study two-body non-Hermitian physics in the context of an open dissipative system depicted by the Lindblad master equation.Adopting a minimal lattice model of a handful of interacting fermions with single-particle dissipation,we show that the non-Hermitian effective Hamiltonian of the master equation gives rise to two-body scattering states with state-and interaction-dependent parity-time transition.The resulting two-body exceptional points can be extracted from the trace-preserving density-matrix dynamics of the same dissipative system with three atoms.Our results not only demonstrate the interplay of parity-time symmetry and interaction on the exact few-body level,but also serve as a minimal illustration on how key features of non-Hermitian few-body physics can be probed in an open dissipative many-body system. 相似文献
19.
Jing-Quan Li Jia-Jie Li Lu Qi Zhi-Xu Zhang Ji Cao Wen-Xue Cui Shou Zhang Hong-Fu Wang 《Annalen der Physik》2023,535(8):2300133
The symmetries and topological properties of the topological counterparts in 1D non-Hermitian systems are investigated. It is found that, after applying the non-unitary similarity transformation, the non-unitary topological counterpart in real space exhibits completely different global symmetries except for the sublattice symmetry and reveals many brand new local symmetries. Due to the abundant symmetries of non-unitary topological counterparts, it is also found that the unique overlapping projections about the unit sphere vector representing the eigenstates appear in the nontrivial regions, and the triviality of the point-gap topology of non-unitary topological counterpart completely eliminate the intrinsic skin effect in non-Hermitian systems. It is also shown that the unitary topological counterpart never arises any changes for the original symmetries and topological structures even in real space. Unitary topological counterparts are further summarized about the two-band Bloch Hamiltonian, which can expand the definition of non-Bloch winding number. Furthermore, it is demonstrated theoretically that the Bloch Hamiltonian would still hold time-reversal symmetry, abnormal particle-hole symmetry, and sublattice symmetry even suffering from the non-unitary transformation. This work provides a new way to understand the roles of symmetry and topology in non-Hermitian systems from the perspective of topological counterparts. 相似文献
20.
通过对Willmore区域外,特别是中等及较小约化体积下的形状及其演化进行深入细致的研究,发现在这一区域的形状要远比原有的猜测丰富,亏格g=2的膜泡会展现出比已有结果更多迷人的形状并出现新的膜泡相变分支.同时,数值计算的结果更加期待实验验证,从而为曲率模型的正确性提供有力支持. 相似文献