首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogenation reaction is one of the pillars of the chemical industry for the synthesis of drugs and fine chemicals. To achieve high catalytic performance, it is still highly desirable for constructing novel supported metal catalysts. Different from conventional supports like metal oxides, zeolites and carbon materials, metal-organic frameworks(MOFs) as the emerging porous materials have Hexhibited great potential to host metal nanoparticles (NPs) for achieving hydrogenation reactions with high catalytic efficiency, due to their unique porous structures. Recently, many progresses have been made, and thus, it is necessary to summarize the recent progresses on confining metal NPs inside MOFs for hydrogenation reactions. In this review, we first introduced the general synthesis methods for confining noble metal NPs inside MOFs. Then, the applications of noble metal NPs/MOFs catalysts in hydrogenation reactions were summarized, and the synergistic catalytic performances among noble metal NPs, metal nodes, functional groups, and pore channels in MOFs were illustrated. Subsequently, the hydrogen spillover effect involved in the hydrogenation reactions was discussed. Finally, we provide an outlook on the future research directions and challenges of confining noble metal NPs inside MOFs for hydrogenation reactions.  相似文献   

2.
《天然气化学杂志》2012,(3):275-281
Precise control of the pore sizes for porous carbon materials is of importance to study the confinement effect of metal particles because the pore size in nanosize range will decide the physical and chemical properties of the metal nanoparticles.In this paper,we report a new approach for the synthesis of iron doped ordered mesoporous carbon materials with adjustable pore size using Fe-SBA-15 as hard template and boric acid as the pore expanding reagent.The pore size can be precisely adjusted by a step of 0.4 nm in the range of 3-6 nm.The carbonization temperature can be lowered to 773 K due to the catalytic role of the doped iron.The present approach is suitable for facile synthesis of metal imbedded porous carbon materials with tunable pore sizes.  相似文献   

3.
Development of heterogeneous catalysts has attracted increasing attention, owing to their remarkable catalytic performance and recyclability. Herein, we report well‐developed heterogeneous catalysts with a three‐dimensional ordered hierarchical structure, constructed from nickel or cobalt nanoparticles embedded in porous carbon. The obtained catalysts were fully characterized by several techniques. On account of the uniform distribution of metal nanoparticles in the porous carbon matrix and large diffusion channels that allow for effective mass transport, the catalysts exhibited superior catalytic performance for styrene epoxidation reaction. In particular, the catalysts showed good catalytic activity, high selectivity and excellent recyclability toward the styrene epoxidation. Thus, this facile approach developed allows for fabricating advanced heterogeneous catalysts with high catalytic activities for useful practical applications.  相似文献   

4.
Metal nanoparticles are key materials in heterogeneous catalysis due to their high catalytic activity and selectivity to the desired product. Accordingly, they are playing a pivotal role in most heterogeneous catalytic reactions that are steeply growing with the development of a colloidal synthetic protocol that enables fine control of size, shape, morphology and composition of metal nanoparticles at an atomic level. These colloidal metal nanoparticles can be dispersed on a rigid support such as mesoporous silica, metal oxide and zeolite, which utilizes metal nanoparticles as model heterogeneous catalysts in industrially important processes involving hydrogenation/dehydrogenation, isomerization and cracking. In this review article, we highlight the recent progress on general colloidal synthetic routes with technological advances in characterization tools that enable the atomic-scale observation of metal nanoparticles. Structure-dependent contributions on the control of product selectivity and turnover rate are also discussed by combining advanced ex situ and in situ surface characterization tools that can monitor the structural change of metal nanocatalysts as well as the evolution of reaction intermediates under the reaction conditions.  相似文献   

5.
Here we demonstrate for the first time the preparation of a triflic acid (TFA)‐functionalized mesoporous nanocage with tunable pore diameters by the wet impregnation method. The obtained materials have been unambiguously characterized by XRD, N2 adsorption, FTIR spectroscopy, and NH3 temperature‐programmed desorption (TPD). From the characterization results, it has been found that the TFA molecules are firmly anchored on the surface of the mesoporous supports without affecting their acidity. We also demonstrate the effect of the pore and cage diameter of the KIT‐5 supports on the loading of TFA molecules inside the pore channels. It has been found that the total acidity of the materials increases with an increase in the TFA loading on the support, whereas the acidity of the materials decreases with an increase in the pore diameter of the support. The acidity of the TFA‐functionalized mesoporous nanocages is much higher than that of the zeolites and metal‐substituted mesoporous acidic catalysts. The TFA‐functionalized materials have also been employed as the catalysts for the synthesis of 7‐hydroxy‐4‐methylcoumarin by means of the Pechmann reaction under solvent‐free conditions. It has been found that the catalytic activity of the TFA‐functionalized KIT‐5 is much higher than that of zeolites and metal‐substituted mesoporous catalytic materials in the synthesis of coumarin derivatives. The stability of the catalyst is extremely good and can be reused several times without much loss of activity in the above reaction.  相似文献   

6.
Palladium's pore cousin: a facile approach is described for the size-controlled preparation of porous single-crystalline Pd nanoparticles. These porous Pd nanoparticles exhibit size-independent catalytic activities for the Suzuki coupling and are more active than commercial Pd/C catalysts.  相似文献   

7.
介孔硅材料由于具有大的比表面积,均一的孔结构和大的孔径,常被用于分离、吸附和催化等领域.本文综述了近年来国内外介孔硅材料及其负载型催化剂去除各类挥发性有机物(VOCs)的研究进展,主要包括烃类、甲醇、甲醛、丙酮、苯、甲苯、萘、乙酸乙酯等.讨论了介孔硅材料的结构对VOCs吸附过程的影响;介绍了不同催化剂消除各类VOCs的催化性能及反应机理,并重点评述了甲苯在不同催化剂上的研究进展.分析结果表明,介孔硅材料的表面环境、孔道结构以及宏观形貌是影响VOCs分子在介孔硅材料上吸附的主要因素;贵金属催化剂的应用需要提高其抗中毒性以及降低成本;过渡金属的研究应着重于研发高活性的负载型过渡金属复合氧化物催化剂.最后对国内外介孔硅材料及其负载型催化剂的发展进行了展望,今后催化剂的设计可以从“氧化硅载体”和“介孔孔道”两个方面展开,这将为设计合适的催化剂处理各类VOCs污染物提供一定参考.  相似文献   

8.
In this work, nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons(N/Co/OMCs) were used as noble-metal free electrocatalysts with high catalytic efficiency. Compared with OMCs with long channel length, due to more entrances for catalytic target accessibility and a short pathway for rapid diffusion, the utilization efficiency of cobalt nanoparticles inside the plate-like OMCs with short pore length is well improved, which can take full advantage of porous structure in electrocatalysis and increase the utilization of catalysts. The active sites in N/Co/OMCs for oxygen reduction reaction(ORR) are highly exposed to oxygen molecule, which results in a high activity for ORR. By combination of the catalytic properties of nitrogen dopant, incorporation of Co nanoparticles, and structural properties of OMCs, the N/Co/plate-like OMCs are highly active noble-metal free catalysts for ORR in alkaline solution.  相似文献   

9.
Here we demonstrate for the first time the encapsulation of a chiral oxazaborolidine complex in the 3D mesoporous channels of an amine functionalized KIT-6 material via covalent bonding through a post-synthetic approach. The physico-chemical properties of the pure and immobilized KIT-6 catalysts were obtained by various techniques such as XRD, nitrogen adsorption, HRSEM, UV-Vis diffuse reflectance spectroscopy, and FT-IR spectroscopy. It has been found that the structural stability of the KIT-6 was not affected even after the immobilization of a significant amount of chiral ligand inside the mesoporous channels of the support. However, the values of structural parameters such as the specific surface area and the specific pore volume of the KIT-6 support was significantly lower than the pure KIT-6 support. The chemical interaction between the chiral ligand inside the mesochannels and the KIT-6 support was also confirmed by UV-Vis and FT-IR spectroscopy. The chiral catalytic performance of the immobilized catalysts for the enantioselective reduction of aromatic prochiral ketones was demonstrated and the results were compared with chiral catalyst immobilized supports with uni-dimensional porous structures, such as MCM-41 and SBA-15. Among the catalysts studied, chiral catalyst immobilized KIT-6 showed the highest performance with a high product yield and a high enantioselectivity due to its 3D porous structure with two continuous and interpenetrating systems of chiral channels and an interwoven 3D cylindrical type pores of Ia3d symmetry. The catalyst also exhibited much better recycling capability than other chiral catalyst supported mesoporous materials used in the study.  相似文献   

10.
Synthesis of mesoporous materials has become more and more important due to their wide application. Nowadays, there are two main ideas in their preparation. One is focused on the templating method. The other is based on metal-organic frameworks (MOFs) constructed from molecular building blocks. Herein, we exploit a new idea for their facile and general synthesis, namely, using "artificial atoms" (monodisperse nanoparticles) as uniform building blocks to construct ordered mesoporous materials. Mesoporous Ag, Ag2S, and Ag2Se have been obtained to demonstrate this concept. On the other hand, we also describe a facile method to prepare the "building blocks". Ag nanoparticles were obtained by direct thermal decomposition of AgNO3 in octadecylamine, and Ag2S/Ag2Se nanoparticles were synthesized by reaction between sulfur or selenium powder and Ag nanoparticles formed in situ. This approach for Ag, Ag2S, and Ag2Se nanoparticles is efficient, economical, and easy to scale up in industrial production.  相似文献   

11.
The development of a practical synthetic method to functionalize hollow mesoporous silica with organic groups is of current intere st for selective adsorption and ene rgy storage applications.Herein,a facile and controllable one-pot approach for the synthesis of monodisperse amino-functionalized hollow mesoporous silica nanoparticles is presented.A novel solid-to-hollow structural transformation procedure of the silica nanoparticles is presented.The structural transformation is easily designed,as obse rved through transmission electro n microscopy,by tailo ring the HCl and N-lauroylsarcosine sodium molar ratio and the water content in the sol-gel.Ordered and radially oriented in situ aminofunctionalized mesochannels were successfully introduced into the shells of the hollow silica nanoparticles.A formation mechanism for the hollow mesoporous silica materials is discussed.  相似文献   

12.
Platinum nanoparticles were incorporated within the pore system of ordered mesoporous carbon (OMC) by impregnating the carbon with a water-in-oil (w/o) microemulsion containing dissolved platinum salt followed by reduction of the platinum ions in situ inside the carbon pore system. The procedure provides preparation of metallic nanoparticles from hydrophilic precursors inside the hydrophobic carbon support structure with simultaneous control of the maximum metal particle size. Electron tomography was used to verify the presence of platinum nanoparticles inside the carbon material.  相似文献   

13.
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core–shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2-anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec−1, low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.  相似文献   

14.
通过一步液滴法在不同的反应溶剂体系下制备了一系列无定形硅铝酸盐载体, 并进一步制备出Pd基负载型多孔催化材料, 探究了反应溶剂极性和反应物Si/Al比对载体材料和催化剂的影响, 实现了通过一步液滴法调控硅铝酸盐酸性和孔道属性. 结果表明, 在极性较小的反应溶剂体系中制得了富含介孔的无定形硅铝酸盐载体材料, 并且通过改变Si/Al比可实现载体材料的酸性、 比表面积及孔道尺寸的调控, 比表面积和总酸量分别达到349.6 m2/g和1.389 mmol/g. 由于该载体材料高的比表面积及丰富的介孔孔道, 所制得的Pd基负载型多孔催化材料的Pd金属分散性达到了63.17%, 在硝基苯加氢反应中实现了99.75%的转化率和94.62%的选择性, 在苯甲醇氧化反应中表现出40.61%的转化率及38.09%的选择性, 远远优于利用商用载体合成的 Pd/Al2O3催化材料. 这种简单有效的合成方法使得按照目标催化反应的类型来设计高效催化剂成为可能.  相似文献   

15.
Composite materials consisting of nanoscale gold particles and protective polymer shells were designed and tested as catalysts in various chemical reactions. Initially, the systematic incorporation of multiple gold nanoparticles into a poly(N-isopropylacrylamide) particle was achieved by an in situ method under light irradiation. The degree of gold nanoparticle loading, along with the structural and morphological properties, was examined as a function of the amount of initial gold ions and reducing agent. As these gold nanoparticles were physically-embedded within the polymer particle in the absence of strong interfacial interactions between the gold nanoparticles and polymer matrix, the readily-accessible surface of the gold nanoparticles with a highly increased stability allowed for their use as recyclable catalysts in oxidation, reduction, and coupling reactions. Overall, the ability to integrate catalytically-active metal nanoparticles within polymer particles in situ allows for designing novel composite materials for multi-purpose catalytic systems.  相似文献   

16.
通过浸渍法和硫引入贵金属法分别制备了主要负载在介孔碳主孔道(MPC/Pd-1)和负载在介孔碳孔壁上小介孔中[MPC/(S)Pd-2]的两类负载型钯电催化剂, 用XRD, SEM, TEM和电化学等方法表征了其结构和电催化性能. 循环伏安结果表明, 有序介孔碳载钯催化剂MPC/Pd-1和MPC/(S)Pd-2对甲酸氧化的催化活性分别是商用钯黑催化剂的4.0和2.4倍. MPC/Pd-1中的钯位于介孔碳的主孔道上, 增加了催化剂/电解质/反应物三相界面的面积, 使得其比MPC/(S)Pd-2的催化活性更高.  相似文献   

17.
The heterogenization of homogeneous metal complex catalysts has attracted great attention. The encapsulation of metal complexes into nanochannels of mesoporous materials is achieved by coating metal oxides at/near the pore entrance by diffusion‐limited atomic layer deposition (ALD) to produce a hollow plug. The pore size of the hollow plug is precisely controlled on the sub‐nanometer scale by the number of ALD cycles to fit various metal complexes with different molecular sizes. Typically, Co or Ti complexes are successfully encapsulated into the nanochannels of SBA‐15, SBA‐16, and MCM‐41. The encapsulated Co and Ti catalysts show excellent catalytic activity and reusability in the hydrolytic kinetic resolution of epoxides and asymmetric cyanosilylation of carbonyl compounds, respectively. This ALD‐assisted encapsulation method can be extended to the encapsulation of other homogeneous catalysts into different mesoporous materials for various heterogeneous reactions.  相似文献   

18.
大部分的挥发性有机物(VOCs)污染环境,危害人身健康.目前,我国虽然已开展了治理 VOCs污染的工作,但还缺乏有效的、拥有自主知识产权的 VOCs治理技术,因此研发新型高效 VOCs处理技术迫在眉睫.催化氧化法是公认的最有效消除 VOCs的途径之一,而高性能催化剂的研发是实现该过程的关键.近年来,人们围绕消除 VOCs的高效且价廉的催化剂的研发开展了卓有成效的工作,许多过渡金属氧化物、混合或复合金属氧化物及其负载贵金属催化剂均被认为是有效的催化氧化材料.与体相材料相比,多孔材料具有发达的孔道结构和高的比表面积,一方面有利于反应物的扩散、吸附和脱附,因而具有更高的催化活性和选择性;另一方面有利于活性组分(如贵金属等)在多孔材料表面的高分散,抑制活性组分的烧结,因而具有更好的催化稳定性.本文简述了近年来多孔金属氧化物在环境污染物消除领域的研究进展,阐述了以有序介孔或大孔过渡金属氧化物、钙钛矿型氧化物和负载贵金属催化剂的制备及其对典型 VOCs(如苯系物、醇类、醛类及酮类等)氧化的催化性能,重点介绍了四类催化材料,包括有序介孔过渡金属氧化物或复合氧化物(Co3O4, MnO2, Fe2O3, Cr2O3和 LaFeO3等)催化剂,有序介孔金属氧化物负载贵金属(Au/Co3O4, Au/MnO2和 Pd/Co3O4等)催化剂,三维有序大孔过渡金属氧化物或复合氧化物(Fe2O3, LaMnO3, La0.6Sr0.4MnO3和 La2CuO4等)催化剂,以及三维有序大孔金属氧化物负载贵金属(Au/Co3O4, Au/LaCoO3, Au/La0.6Sr0.4MnO3和 AuPd/Co3O4等)催化剂的制备及其物化性质与对苯、甲苯、二甲苯、乙醇、丙酮、甲醛、甲烷或氯甲烷等 VOCs氧化的催化性能之间的相关性.借助二氧化硅或聚甲基丙烯酸甲酯微球等硬模板,采用纳米浇铸法可制备出二维或三维的有序单一或多级孔道结构的金属氧化物.研究表明,多孔金属氧化物的催化性能远优于其体相甚至纳米催化剂的.有序多孔材料的优异催化性能与其拥有大的比表面积、高的吸附氧物种浓度、优良的低温还原性、独特的孔道结构、活性组分的高分散以及贵金属与氧化物载体之间的强相互作用等有关.探明影响催化剂活性的因素有利于从原子水平上认识催化过程,为新型高效催化剂的设计与制备奠定基础.本文还指出了此类研究中存在的一些问题,例如利用硬模板法制备多孔材料的缺点是目标催化剂的收率低,硬模板浪费严重,大规模制备多孔催化剂势必增加制备成本,这些问题有待于妥善解决.与此同时,还展望了 VOCs消除技术的未来发展趋势,采用多种技术联用的方法有望最大程度地提高 VOCs的消除效率.  相似文献   

19.
Supported metal nanoparticles are used as heterogeneous catalysts but often deactivated due to sintering at high temperatures. Confining metal species into a porous matrix reduces sintering, yet supports rarely provide additional stabilization. Here, we used the silanol-rich layered zeolite IPC-1P to stabilize ultra-small Rh nanoparticles. By adjusting the IPC-1P interlayer space through swelling, we prepared various architectures, including microporous and disordered mesoporous. In situ scanning transmission electron microscopy confirmed that Rh nanoparticles are resistant to sintering at high temperature (750 °C, 6 hrs). Rh clusters strongly bind to surface silanol quadruplets at IPC-1P layers by hydrogen transfer to clusters, while high silanol density hinders their migration based on density functional theory calculations. Ultimately, combining swelling with long-chain surfactant and utilizing metal-silanol interactions resulted in a novel, catalytically active material—Rh@IPC_C22.  相似文献   

20.
Highly basic MgO nanoparticles with different sizes have been successfully immobilized over mesoporous carbon with different pore diameters by a simple wet-impregnation method. The prepared catalysts have been characterized by various sophisticated techniques, such as XRD, nitrogen adsorption, electron energy loss spectroscopy, high-resolution TEM, X-ray photoelectron spectroscopy, and the temperature-programmed desorption of CO(2). XRD results reveal that the mesostructure of the support is retained even after the huge loading of MgO nanoparticles inside the mesochannels of the support. It is also demonstrated that the particle size and dispersion of the MgO nanoparticles on the support can be finely controlled by the simple adjustment of the textural parameters of the supports. Among the support materials studied, mesoporous carbon with the largest pore diameter and large pore volume offered highly crystalline small-size cubic-phase MgO nanoparticles with a high dispersion. The basicity of the MgO-supported mesoporous carbons can also be controlled by simply changing the loading of the MgO and the pore diameter of the support. These materials have been employed as heterogeneous catalysts for the first time in the selective synthesis of sulfinamides. Among the catalysts investigated, the support with the large pore diameter and high loading of MgO showed the highest activity with an excellent yield of sulfinamides. The catalyst also showed much higher activity than the pristine MgO nanoparticles. The effects of the reaction parameters, including the solvents and reaction temperature, and textural parameters of the supports in the activity of the catalyst have also been demonstrated. Most importantly, the catalyst was found to be highly stable, showing excellent activity even after the third cycle of reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号