首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zirconocene is the key : A new synthetic method, which utilizes zirconocene‐mediated coupling of alkynes, has been developed for the preparation of a new class of highly Lewis acidic boroles (see scheme). Such compounds hold potential for applications in catalysis and the field of electron‐deficient organic materials.

  相似文献   


2.
Boron cations are elusive and highly electrophilic species that play a key role in the chemistry of boron. Despite early interest in the chemistry of boron cations, until recently they have largely remained chemical curiosities. However, hints at harnessing their potential as potent electrophiles have begun to appear and developments in weakly coordinating anion technology suggest that this is an area of research that is ripe for exploration. It has been nearly 20 years since the last major review on boron cations; herein we summarize the progress in the area since that time.  相似文献   

3.
4.
5.
N‐methylacridinium salts are Lewis acids with high hydride ion affinity but low oxophilicity. The cation forms a Lewis adduct with 4‐(N,N‐dimethylamino)pyridine but a frustrated Lewis pair (FLP) with the weaker base 2,6‐lutidine which activates H2, even in the presence of H2O. Anion effects dominate reactivity, with both solubility and rate of H2 cleavage showing marked anion dependency. With the optimal anion, a N‐methylacridinium salt catalyzes the reductive transfer hydrogenation and hydrosilylation of aldimines through amine–boranes and silanes, respectively. Furthermore, the same salt is active for the catalytic dehydrosilylation of alcohols (primary, secondary, tertiary, and ArOH) by silanes with no observable over‐reduction to the alkanes.  相似文献   

6.
MP2/aug‐cc‐pVTZ calculations were performed on complexes of boron and aluminum trihydrides and trihalides with hydrogen cyanide (ZH3‐NCH and ZX3‐NCH; Z=B, Al; X=F, Cl). The complexes are linked through the B???N and Al???N interactions, which are named as triel bonds and which are classified as π‐hole bonds. It was found that they possess numerous characteristics of typical covalent bonds, since they are ruled mainly by processes of the electron charge shift from the Lewis base to the Lewis acid unit. Other configurations of the ZH3‐NCH and ZX3‐NCH complexes linked by the dihydrogen, hydrogen, and halogen bonds were found. However, these interactions are much weaker than the corresponding π‐hole bonds. The quantum theory of atoms in molecules and the natural bond orbital approaches were applied to characterize the complexes and interactions analyzed. The crystal structures of triel trihydrides and triel trihalides were also analyzed for comparison with the results of calculations.  相似文献   

7.
8.
9.
Base‐free 3‐methyl‐1‐boraadamantane was synthesized by starting from its known THF adduct, transforming it to a butylate‐complex with n‐butyllithium, cleaving the cage with acetyl chloride to give 3‐n‐butyl‐5‐methyl‐7‐methylene‐3‐borabicyclo[3.3.1]nonane and closing the cage again by reacting the latter with dicyclohexylborane. The identity of 3‐methyl‐1‐boraadamantane was proven by 1H, 11B and 13C NMR spectroscopy and elemental analysis. The experimental equilibrium structure of the free 3‐methyl‐1‐boraadamantane molecules has been determined at 100 °C by using gas‐phase electron diffraction. For this structure determination, an improved method for data analysis has been introduced and tested: the structural refinement versus gas‐phase electron diffraction data (in terms of Cartesian coordinates) with a set of quantum‐chemically derived regularization constraints for the complete structure under optimization of a regularization constant, which maximizes the contribution of experimental data while retaining a stable refinement. The detailed analysis of parameter errors shows that the new approach allows obtaining more reliable results. The most important structural parameters are: re(B‐C)av=1.556(5) Å, ${\angle }$ e(C‐B‐C)av=116.5(2)°. The configuration of the boron atom is pyramidal with ${\sum \angle }$ (C‐B‐C)=349.4(4)°. The nature of bonding was analyzed further by applying the natural bond orbital (NBO) and atoms in molecules (AIM) approaches. The experimentally observed shortening of the B? C bonds and elongation of the adjacent C? C bonds can be explained by the σ(C‐C)→p(B) hyperconjugation model. Both NBO and AIM analyses predict that the B? C bonds are significantly bent in the direction out of the cage.  相似文献   

10.
11.
Terthiophene and bithiophene derivatives functionalized by BF(2) chelation were synthesized as a new type of electron acceptor, and their properties were compared to those of bifuran and biphenyl derivatives. These new compounds are characterized by quadrupolar structures due to resonance contributors generated by BF(2) chelation. The bithiophene derivative has a strong quadrupolar character compared with the bifuran and biphenyl derivatives because their hydrolytic analyses indicated that the bithiophene moiety has a larger on-site Coulomb repulsion than the others. The terthiophene derivative has a smaller on-site Coulomb repulsion than the bithiophene derivative due to the addition of a thiophene spacer. These BF(2) complexes exhibit long-wavelength absorptions and according to measurements of ionization potentials and absorption edges they have energetically low-lying HOMOs and LUMOs. The crystal structure of the bithiophene derivative is of the herringbone type, with short F···S and F···C contacts affording dense crystal packing. n-Type semiconducting behaviour was observed in organic field-effect transistors based on these BF(2) complexes.  相似文献   

12.
The super acidity of the unsolvated Al(C6F5)3 enabled isolation of the elusive silane–alane complex [Si? H???Al], which was structurally characterized by spectroscopic and X‐ray diffraction methods. The Janus‐like nature of this adduct, coupled with strong silane activation, effects multifaceted frustrated‐Lewis‐pair‐type catalysis. When compared with the silane–borane system, the silane–alane system offers unique features or clear advantages in the four types of catalytic transformations examined in this study, including: ligand redistribution of tertiary silanes into secondary and quaternary silanes, polymerization of conjugated polar alkenes, hydrosilylation of unactivated alkenes, and hydrodefluorination of fluoroalkanes.  相似文献   

13.
Molecular interactions between pi systems having different pi-electron character (benzene, hexafluorobenzene, and borazine), and a Lewis acid/base (borane and ammonia) were theoretically studied. An attractive interaction between benzene, the electron-rich pi system, and borane was observed. On the other hand, repulsive interactions between benzene and ammonia was observed when the lone pair of nitrogen points toward the benzene ring. In contrast, an attractive interaction between hexafluorobenzene, an electron-deficient pi system, and ammonia was observed. Unexpectedly, a weak attractive interaction between hexafluorobenzene and borane was also observed. Borazine shows an interaction both to borane and ammonia. The attraction between the nitrogen atom of borazine and borane was larger than that between the boron atom of borazine and ammonia.  相似文献   

14.
15.
16.
17.
The oxoboryl complex trans‐[(Cy3P)2BrPt(B?O)] ( 2 ) reacts with the Group 13 Lewis acids EBr3 (E=Al, Ga, In) to form the 1:1 Lewis acid–base adducts trans‐[(Cy3P)2BrPt(B?OEBr3)] ( 6 – 8 ). This reactivity can be extended by using two equivalents of the respective Lewis acid EBr3 (E=Al, Ga) to form the 2:1 Lewis acid–base adducts trans‐[(Cy3P)2(Br3Al‐Br)Pt(B?OAlBr3)] ( 18 ) and trans‐[(Cy3P)2(Br3Ga‐Br)Pt(B?OGaBr3)] ( 15 ). Another reactivity pattern was demonstrated by coordinating two oxoboryl complexes 2 to InBr3, forming the 1:2 Lewis acid–base adduct trans‐[{(Cy3P)2BrPt(B?O)}2InBr3] ( 20 ). It was also possible to functionalize the B?O triple bond itself. Trimethylsilylisothiocyanate reacts with 2 in a 1,2‐dipolar addition to form the boryl complex trans‐[(Cy3P)2BrPt{B(NCS)(OSiMe3)}] ( 27 ).  相似文献   

18.
The reactions of 1,3-dichloro-1,1,3,3-tetrabutyldistannoxane and dialkyltin dihalides with silver perfluorooctanesulfonate provided the corresponding sulfonates as hydrates. The number of water molecules (n) of hydration was dependent on the conditions. The distannoxane derivative was identified as n from 0.5 to 6, while in the hydrated mononuclear species and DMSO complexes n varied widely from 4 to 13. 119Sn NMR spectroscopy and conductivity measurements indicated the ionic dissociation of these compounds in solution. These compounds exhibited unusually high solubility in polar organic solvents. The ionic dissociation together with facile hydration probably causes the unusual solubility. The Lewis acidity of these compounds was found to be high among organotin derivatives on the basis of ESR spectra of superoxide/metal-ion complexes. In contrast to well-known organotin triflates, these compounds suffered no hydrolysis upon storage in open air. The high catalytic activity of the distannoxane 1 was exemplified for various carbon-carbon bond-forming reactions, such as Mukaiyama-aldol as well as -Michael reactions and allylation of aldehydes.  相似文献   

19.
20.
Boron(III) cations are widely used as highly Lewis acidic reagents in synthetic chemistry. In contrast, boron(II) cations are extremely rare and their chemistry almost completely unknown. They are both Lewis acids and electron donors, properties that are commonly associated with catalytically active late‐transition‐metal complexes. This double reactivity pattern ensures a rich and diverse chemistry. Herein we report the facile synthesis of several new boron(II) cations starting with a special diborane with two easily exchangeable triflate substituents. By increasing the π‐acceptor character of the neutral σ‐donor reaction partners, first reactions were developed in which the combined Lewis acidity and electron‐donor properties of boron(II) cations are applied for the reduction of organic molecules. The results of our study pave the way for applications of these unusual compounds in synthetic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号