首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show that if G is a 3-connected graph of order at least seven, then every longest path between distinct vertices in G contains at least two contractible edges. An immediate corollary is that longest cycles in such graphs contain at least three contractible edges.  相似文献   

2.
It is shown that with one small exception, the 3-connected graphs admitting longest cycles that contain less than four contractible edges of the parent graph are the members of three closely related infinite families. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
4.
An edge e of a 3-connected graph G is said to be removable if G - e is a subdivision of a 3-connected graph. If e is not removable, then e is said to be nonremovable. In this paper, we study the distribution of removable edges in 3-connected graphs and prove that a 3-connected graph of order n ≥ 5 has at most [(4 n — 5)/3] nonremovable edges.  相似文献   

5.
An edge of a 3-connected graph is said to be contractible if its contraction results in a 3-connected graph. In this paper, a covering of contractible edges is studied. We give an alternative proof to the result of Ota and Saito (Scientia (A) 2 (1988) 101–105) that the set of contractible edges in a 3-connected graph cannot be covered by two vertices, and extended this result to a three-vertex covering. We also study the existence of a contractible edge whose contraction preserves a specified cycle, and show that a non-hamiltonian 3-connected graph has a contractible edge whose contraction preserves the circumference.  相似文献   

6.
An edge e of a k-connected graph G is said to be k-removable if Ge is still k-connected. A subgraph H of a k-connected graph is said to be k-contractible if its contraction results still in a k-connected graph. A k-connected graph with neither removable edge nor contractible subgraph is said to be minor minimally k-connected. In this paper, we show that there is a contractible subgraph in a 5-connected graph which contains a vertex who is not contained in any triangles. Hence, every vertex of minor minimally 5-connected graph is contained in some triangle.  相似文献   

7.
It is shown that if G is a 3-connected graph with |V(G)| ≥ 10, then, with the exception of one infinite class based on K3,p, it takes at least four vertices to cover the set of contractible edges of G. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
LetG be a cyclicallyk-edge-connected cubic graph withk 3. Lete be an edge ofG. LetG be the cubic graph obtained fromG by deletinge and its end vertices. The edgee is said to bek-removable ifG is also cyclicallyk-edge-connected. Let us denote by S k (G) the graph induced by thek-removable edges and by N k (G) the graph induced by the non 3-removable edges ofG. In a previous paper [7], we have proved that N 3(G) is empty if and only ifG is cyclically 4-edge connected and that if N 3(G) is not empty then it is a forest containing at least three trees. Andersen, Fleischner and Jackson [1] and, independently, McCuaig [11] studied N 4(G). Here, we study the structure of N k (G) fork 5 and we give some constructions of graphs such thatN k (G) = E(G). We note that the main result of this paper (Theorem 5) has been announced independently by McCuaig [11].
Résumé SoitG un graphe cubique cyliquementk-arête-connexe, aveck 3. Soite une arête deG et soitG le graphe cubique obtenu à partir deG en supprimante et ses extrémités. L'arêtee est ditek-suppressible siG est aussi cycliquementk-arête-connexe. Désignons par S k (G) le graphe induit par les arêtesk-suppressibles et par N k (G) celui induit par les arêtes nonk-suppressibles. Dans un précédent article [7], nous avons montré que N 3(G) est vide si et seulement siG est cycliquement 4-arête-connexe et que si N 3(G) n'est pas vide alors c'est une forêt possédant au moins trois arbres. Andersen, Fleischner and Jackson [1] et, indépendemment, McCuaig [11] ont étudié N 4(G). Ici, nous étudions la structure de N k (G) pourk 5 et nous donnons des constructions de graphes pour lesquelsN k (G) = E(G). Nous signalons que le résultat principal de cet article (Théorème 5) a été annoncé indépendamment par McCuaig [11].
  相似文献   

9.
10.
In this paper, we show that if a 3-connected graph G other than K4 has a vertex subset K that covers the set of contractible edges of G and if |K| 3 and |V(G)| 3|K| ? 1, then K is a cutset of G. We also give examples to show that this result is best possible. In particular, the result does not hold for K with smaller cardinality.  相似文献   

11.
Let G be a 4-connected graph, and let Ec(G) denote the set of 4-contractible edges of G and let denote the set of those edges of G which are not contained in a triangle. Under this notation, we show that if , then we have .  相似文献   

12.
We give necessary and sufficient conditions for four edges in a 3-connected cubic graph to lie on a cycle. As a consequence, if such a graph is cyclically 4-edge-connected with order greater than 8 it is shown that any four independent edges lie on a cycle.  相似文献   

13.
It has previously been shown that if M is a maximum matching in a 3-connected graph G, other than K4, then M contains at least one contractible edge of G. In this paper, we give a constructive characterization of the 3-connected graphs G having a maximum matching containing only one contractible edge of G.  相似文献   

14.
Given five edges in a 3-connected cubic graph there are obvious reasons why there may not be one cycle passing through all of them. For instance, an odd subset of the edges may form a cutset of the graph. By restricting the sets of five edges in a natural way we are able to give necessary and sufficient conditions for the set to be a subset of edges of some cycle. It follows as a corollary that, under suitable restrictions, any five edges of a cyclically 5-edge connected cubic graph lie on a cycle.  相似文献   

15.
Let G be a 5-connected graph. For an edge e of G, we do the following operations on G: first, delete the edge e from G, resulting the graph G?e; second, for each vertex x of degree 4 in G?e, delete x from G?e and then completely connect the 4 neighbors of x by K 4. If multiple edges occur, we use single edge to replace them. The final resultant graph is denoted by G ? e. If G ? e is still 5-connected, then e is called a removable edge of G. In this paper, we investigate the distribution of removable edges in a cycle of a 5-connected graph. And we give examples to show some of our results are best possible in some sense.  相似文献   

16.
The eccentricity e(υ) of vertex υ is defined as a distance to a farthest vertex from υ. The radius of a graph G is defined as r(G) = {e(u)}. We consider properties of unchanging the radius of a graph under two different situations: deleting an arbitrary edge and deleting an arbitrary vertex. This paper gives the upper bounds for the number of edges in such graphs. Supported by VEGA grant No. 1/0084/08.  相似文献   

17.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. An edge of a k-connected graph is called trivially noncontractible if its two end vertices have a common neighbor of degree k. Ando [K. Ando, Trivially noncontractible edges in a contraction critically 5-connected graph, Discrete Math. 293 (2005) 61-72] proved that a contraction critical 5-connected graph on n vertices has at least n/2 trivially noncontractible edges. Li [Xiangjun Li, Some results about the contractible edge and the domination number of graphs, Guilin, Guangxi Normal University, 2006 (in Chinese)] improved the lower bound to n+1. In this paper, the bound is improved to the statement that any contraction critical 5-connected graph on n vertices has at least trivially noncontractible edges.  相似文献   

18.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

19.
We prove results concerning the distribution of 4-contractible edges in a 4-connected graph G in connection with the edges of G not contained in a triangle. As a corollary, we show that if G is 4-regular 4-connected graph, then the number of 4-contractible edges of G is at least one half of the number of edges of G not contained in a triangle.  相似文献   

20.
Let k $k$ be a positive integer. A graph is said to be uniformly k $k$ -connected if between any pair of vertices the maximum number of independent paths is exactly k $k$ . Dawes showed that all minimally 3-connected graphs can be constructed from K 4 ${K}_{4}$ such that every graph in each intermediate step is also minimally 3-connected. In this paper, we generalize Dawes' result to uniformly 3-connected graphs. We give a constructive characterization of the class of uniformly 3-connected graphs which differs from the characterization provided by Göring et al., where their characterization requires the set of all 3-connected and 3-regular graphs as a starting set, the new characterization requires only the graph K 4 ${K}_{4}$ . Eventually, we obtain a tight bound on the number of edges in uniformly 3-connected graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号