首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The objective of this study is to develop a model for cotransport of colloids and nanoparticles (NPs) in porous media under two particle capture mechanisms. The particle capture rate is proportional to the capture probability, which is a function of retained concentration, called the filtration function. Laboratory bench-scale experiments of individual transport of NPs and colloidal-size kaolinite clay particles through packed columns produced breakthrough curves (BTCs) that monotonically increased with time and stabilised at some value lower than the injected concentration. We discuss the filtration function that corresponds to BTCs stabilising at the concentration lower than the injected value. This so-called binary filtration function incorporates two particle capture mechanisms. The analytical transport model with a binary filtration function was capable to fit successfully BTCs obtained from individual transport experiments using kaolinite and NPs conducted by Chrysikopoulos et al. (Transp Porous Med 119(1):181–204, 2017). Assuming that the electrostatic particle–solid matrix interaction and the fraction of the solid matrix surface area occupied by a single attached particle (kaolinite or NP) are the same for individual transport of either kaolinite particles or NPs and for simultaneous cotransport of kaolinite particles and NPs, the proposed binary filtration function was extended for the cotransport case. Although the breakthrough data from cotransport experiments with kaolinite particles and NPs have six degrees of freedom, the developed cotransport model successfully matches the BTCs by tuning two constants only. This validates the developed model for cotransport of two colloidal populations with different attachments and straining rates.

  相似文献   

2.

Table of Contents

Transport in Porous Media  相似文献   

3.

Volume Contents

Transport in Porous Media  相似文献   

4.

Table of Contents

Transport in Porous Media  相似文献   

5.
Electrohydrodynamics in Porous Media   总被引:1,自引:0,他引:1  
In this work we develop the volume averaged form of the frequency-dependent governing equations for electrohydrodynamics in a saturated porous medium. The concept of local electrical equilibrium is identified, and when this condition is valid we obtain a one-equation model describing the coupled transport of momentum and electric charge. When local electrical equilibrium is not valid, separate forms of Maxwell's equations must be developed for both the fluid and solid phases.  相似文献   

6.
7.
Transport in Porous Media - Convective acceleration occurs in porous media flows due to the spatial variations of the nonuniform flow channel geometry of natural pores. This article demonstrates...  相似文献   

8.
Transport in Porous Media - Acid mine drainage is generated when sulfide minerals are exposed to air and water through the porous subsurface, and it is significantly accelerated by the action of...  相似文献   

9.
Flow in a porous medium with a random hydraulic conductivity tensor K(x) is analyzed when the mean conductivity tensor (x) is a non-constant function of position x. The results are a non-local expression for the mean flux vector (x) in terms of the gradient of the mean hydraulic head (x), an integrodifferential equation for (x), and expressions for the two point covariance functions of q(x) and (x). When K(x) is a Gaussian random function, the joint probability distribution of the functions q(x) and (x) is determined.  相似文献   

10.
Foam Drainage in Porous Media   总被引:1,自引:0,他引:1  
In this paper we present a simple analysis of liquid drainage in foams confined in porous media. First we derive the equation for the evolution of the liquid saturation using general mass and momentum conservation arguments and phenomenological relations between the transport parameters and liquid saturation. We find an unusual foam drainage equation in which the determinant terms express the competition between the external force field, represented here by the gravity field, and capillary pressure gradient. We present analytical solutions of the drainage equation in three cases: (a) gravity forces are dominant over capillary forces, (b) capillary forces are dominant over gravity forces, and (c) capillary and gravity forces are comparable in order of magnitude.  相似文献   

11.
In a thermodynamic setting for a single phase (usually fluid), the thermodynamically defined pressure, involving the change in energy with respect to volume, is often assumed to be equal to the physically measurable pressure, related to the trace of the stress tensor. This assumption holds under certain conditions such as a small rate of deformation tensor for a fluid. For a two-phase porous medium, an additional thermodynamic pressure has been previously defined for each phase, relating the change in energy with respect to volume fraction. Within the framework of Hybrid Mixture Theory and hence the Coleman and Noll technique of exploiting the entropy inequality, we show how these three macroscopic pressures (the two thermodynamically defined pressures and the pressure relating to the trace of the stress tensor) are related and discuss the physical interpretation of each of them. In the process, we show how one can convert directly between different combinations of independent variables without re-exploiting the entropy inequality. The physical interpretation of these three pressures is investigated by examining four media: a single solid phase, a porous solid saturated with a fluid which has negligible physico-chemical interaction with the solid phase, a swelling porous medium with a non-interacting solid phase, such as well-layered clay, and a swelling porous medium with an interacting solid phase such as swelling polymers.  相似文献   

12.
This work address a number of fundamental issues and concepts related to local thermal non-equilibrium and the heat flux bifurcation phenomenon in porous media. Different types of heat flux bifurcation phenomenon are discussed in relation to previous works by the authors.  相似文献   

13.
It is well known that multiphase flow in porous media exhibits hysteretic behaviour. This is caused by different fluid–fluid behaviour if the flux reverses. For example, for flow of water in unsaturated soils the process of imbibition and drainage behaves differently. In this paper we study a new model for hysteresis that extends the current playtype hysteresis model in which the scanning curves between drainage and imbibition are vertical. In our approach the scanning curves are non-vertical and can be constructed to approximate experimentally observed scanning curves. Furthermore our approach does not require any book-keeping when the flux reverses at some point in space. Specifically, we consider the problem of horizontal redistribution to illustrate the strength of the new model. We show that all cases of redistribution can be handled, including the unconventional flow cases. For an infinite column, our analysis involves a self-similar transformation of the equations. We also present a numerical approach (L-scheme) for the partial differential equations in a finite domain to recover all redistribution cases of the infinite column provided time is not too large.  相似文献   

14.
The effect of chemical reactions on the process of admixture transport by a flow through a porous medium is considered. On the basis of a number of examples it is shown that the dispersion coefficient depends on the chemical reaction rate constant.  相似文献   

15.
Flow of a fluid through a porous medium is considered with allowance for heat conduction. Both fronts at which the liquid is transformed into steam or a liquid-steam mixture and fronts with inverse transformations are studied. The evolutionarity conditions of these fronts are considered and a model of their structure is proposed.  相似文献   

16.
Reconstruction of Clastic Porous Media   总被引:2,自引:0,他引:2  
In this paper we present a refinement of an algorithm (Pilotti, 1998) to generate three-dimensional granular media by deposition of spherical grains in a viscous fluid. The proposed improvements allow the construction of clastic porous media made up of irregular grains, with controlled level of angularity, sorting and porosity. On the basis of visual comparison with prototypal cross sections and of computed two points correlation functions, we argue that the intergranular void spaces resulting from this procedure provide a satisfactory reproduction of the micro-geometry of several clean consolidated sandstones and can be used to explore the effect of void topology on the flow field properties.  相似文献   

17.
Transport in Porous Media - Solute transport under single-phase flow conditions in porous micromodels was studied using high-resolution optical imaging. Experiments examined loading (injection of...  相似文献   

18.
19.
20.
Time harmonic waves in a swelling porous elastic medium of infinite extent and consisting of solid, liquid and gas phases have been studied. Employing Eringen’s theory of swelling porous media, it has been shown that there exist three dilatational and two shear waves propagating with distinct velocities. The velocities of these waves are found to be frequency dependent and complex valued, showing that the waves are attenuating in nature. Here, the appearance of an additional shear wave is new and arises due to swelling phenomena of the medium, which disappears in the absence of swelling. The reflection phenomenon of an incident dilatational wave from a stress-free plane boundary of a porous elastic half-space has been investigated for two types of boundary surfaces: (i) surface having open pores and (ii) surface having sealed pores. Using appropriate boundary conditions for these boundary surfaces, the equations giving the reflection coefficients corresponding to various reflected waves are presented. Numerical computations are performed for a specific model consisting of sandstone, water and carbon dioxide as solid, liquid and gas phases, respectively, of the porous medium. The variations of phase speeds and their corresponding attenuation coefficients are depicted against frequency parameter for all the existing waves. The variations of reflection coefficients and corresponding energy ratios against the angle of incidence are also computed and depicted graphically. It has been shown that in a limiting case, Eringen’s theory of swelling porous media reduces to Tuncay and Corapcioglu theory of porous media containing two immiscible fluids. The various numerical results under these two theories have been compared graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号